화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.3, 406-413, May, 2021
발포제에 따른 폴리우레탄 폼의 발포 특성 및 물성 분석
Analysis of Foaming Characteristics and Physical Properties of Polyurethane Foam according to Foaming Agents
E-mail:
초록
본 연구에서는 물, HCFC-141b, HFC-245fa, HFO-1233zd, HFO-1336mzz를 사용하여 경질 폴리우레탄 폼을 합성하였고 각각의 발포제가 폼의 합성 및 물성에 미치는 영향을 고찰하였다. 폼 합성 과정에서의 발포제 손실률은 발포제의 가스 생성 속도와 폼의 온도 상승 속도 및 최대 온도의 영향을 받는 것을 확인하였다. 폼의 압축강도는 셀 크기가 작을수록 높게 나타났으며 HFO-1233zd를 사용한 폼은 셀 크기가 작고 가스열전도도가 낮아 높은 단열성능을 나타내었다. 하지만, HFO-1233zd의 가소화 작용으로 인해 시간이 경과할수록 폼의 유리전이온도가 감소하는 것을 확인하였다. 다양한 분석을 통해 HFO-1233zd와 HFO-1336mzz가 HFC 계열의 발포제를 대체할 수 있는 발포제로서 적절한 것을 확인하였다.
In this study, we synthesized rigid polyurethane foam using water, HCFC-141b, HFC-245fa, HFO-1233zd, and HFO-1336mzz and analyzed the effect of each blowing agent on the foam’s thermal and physical properties. It was confirmed that the loss rate of a blowing agent during blowing process is affected by gas generation rate of the blowing agent, the foam’s maximum temperature, and the rate of its temperature rise. Foam with smaller cells showed greater compressive strength, and foam produced using HFO-1233zd showed high insulation performance due to small cells and low gas thermal conductivity. However, the foam’s glass transition temperature decreased as time passed due to the plasticizing effect of HFO-1233zd. Through various analysis, it was confirmed that HFO-1233zd and HFO-1336mzz are suitable for replacing HFC-based blowing agents.
  1. Woods G, The ICI Polyurethane Book; 2nd ed.; Wiley: New York, USA, pp.5 1990.
  2. Edwards KN, et al., Urethane Chemistry and Applications; ACS: Washington D.C., USA, 1981.
  3. Nazeran N, Moghaddas J, J. Non-Cryst. Solids, 461, 1 (2017)
  4. Wang H, Wang QS, He JJ, Mao ZL, Sun JH, Procedia Eng., 52, 377 (2013)
  5. Lee YB, Baek KH, Choe KH, Han CH, Cryogenics, 80, 44 (2016)
  6. Park SB, Choi SW, Kim JH, Bang CS, Composites Part B, 93, 317 (2016)
  7. Lee YB, Choi SH, Choi GH, J. Korean Instit. Gas, 9, 16 (2005)
  8. Son YJ, Kwon SK, Koh SH, Kim YH, Kim SB, Lee YB, Choe KH, Kim WN, Proceedings of ‘01 KIGAS Autumn Conference, 10, 77 2001.
  9. Wu J, Dillon D, Polyurethane Expo 2001; CRC Press: Boca Raton, pp.339 2001.
  10. Han MS, Choi SJ, Kim JM, Kim YH, Kim WN, Lee HS, Sung JY, Macromol. Res., 17(1), 44 (2009)
  11. Kang JW, Kim JM, Kim MS, Kim YH, Kim WN, Jang W, Shin DS, Macromol. Res., 17(11), 856 (2009)
  12. Kang MJ, Kim YH, Park GP, Han MS, Kim WN, Do Park S, J. Mater. Sci., 45(19), 5412 (2010)
  13. Wirpsza Z, Int. Polym. Sci. Technol., 22, 92 (1995)
  14. Rossitto FC, Adam N, J. Cell. Plast., 34, 467 (1998)
  15. Lee YB, Yang YC, Properties of Polyurethane Foam Blown by Environment Friendly Blowing Agent, 2018.
  16. Morais ARC, Simoni LD, Scurto AM, Shiflett MB, SHRAE. Trans., 125, 70 (2019)
  17. Berardi U, Madzarevic J, Appl. Therm. Eng., 164, 11444 (2020)
  18. Jung HC, Ryu SC, Kim WN, Lee YB, Choe KH, Kim SB, J. Appl. Polym. Sci., 81(2), 486 (2001)
  19. Zipfel L, Borner K, Krucke W, Barthelemy P, J. Cell. Plast., 35, 328 (1999)
  20. Suzuki K, Youn SW, Hiroshima H, Jpn. J. Appl. Phys., 55, 76502 (2016)
  21. Huo E, Liu C, Xu X, Dang C, Int. J. Refrig., 83, 118 (2017)
  22. Seo WJ, Jung HC, Kim YH, Kim WN, Choe KH, Lee YB, Choi SH, Polym. Korea, 26(2), 185 (2002)
  23. Lee HI, Lee KY, Polym. Korea, 39(4), 529 (2015)
  24. Seymour RW, Cooper SL, Macromol., 6, 48 (1973)
  25. Koh SH, Kim SB, J. Korean Inst. Gas, 8, 1 (2004)
  26. Jin JF, Chen YL, Wang DN, Hu CP, Zhu S, Vanoverloop L, Randall D, J. Appl. Polym. Sci., 84(3), 598 (2002)
  27. Prociak A, Pielichowske J, Sterzynske T, Polym. Test, 19, 705 (2002)