화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.5, 278-285, May, 2021
생체적 적용을 위한 전기전도성을 갖는 그래핀과 폴리카프로락톤 복합물질 전기방사 섬유형 필름
Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications
E-mail:
This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1% graphene have the highest elongation rate, and 5% samples have the highest strength and elasticity. Graphene contents > 25% show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50% show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.
  1. Grochowski C, Radzikowska E, Maciejewski R, Clin. Neurol. Neurosurg., 173, 8 (2018)
  2. Pereira IM, Marote A, Salgado AJ, Silva NA, Pharmaceuticals, 12 (2019)
  3. Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S, Nanotechnology, 19, 455102 (2008)
  4. Jahromi M, Razavi S, Bakhtiari A, J. Tissue Eng. Regener. Med., 13, 2077 (2019)
  5. Dvali L, Mackinnon S, Clin. Plast. Surg., 30, 203 (2003)
  6. Konofaos P, Halen JPV, J. Reconstr. Microsurg., 29, 149 (2013)
  7. Blacher S, Maquet V, Schils F, Martin D, Schoenen J, Moonen G, Jerome R, Pirard JP, Biomaterials, 24, 1033 (2003)
  8. Dhirendra SK, Rajesh V, Kirubanandan S, Curr. Top. Med. Chem., 8, 341 (2008)
  9. Wang S, Qiu J, Guo W, Yu X, Nie J, Zhang J, Zhang X, Liu Z, Mou X, Li L, Liu H, Adv. Biosyst., 1, 160004 (2017)
  10. Agarwal S, Jiang S, Encyclopedia of Polymeric Nanomaterials, p. 1, Springer, Berlin, Heidelberg (2014).
  11. Greiner A, Wendorff JH, Angew. Chem.-Int. Edit., 46, 5760 (2007)
  12. Duda S, Dreyer L, Behrens P, Wienecke S, Chakradeo T, Glasmacher B, Haastert-Talini K, BioMed Res. Int., 2014, 835269 (2014)
  13. Bhattarai DP, Aguilar LE, Park CH, Kim CS, Membranes, 8, 62 (2018)
  14. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG, Biomaterials, 19, 1935 (1998)
  15. Wang F, Wu F, Huang Y, Compos. Appl. Sci. Manuf., 110, 126 (2018)
  16. Liu F, Wang X, Chen T, Zhang N, Wei Q, Tian J, Wang Y, Ma C, Lu Y, J. Adv. Res., 21, 91 (2020)
  17. Bai RG, Ninan N, Muthoosamy K, Manickam S, Prog. Mater. Sci., 91, 24 (2018)
  18. Lundin V, Herland A, Berggren M, Jager WEH, Teixeira AI, PLOs ONE, 6, e18624 (2011)
  19. Palmieri V, Sciandra F, Bozzi M, Spirito MD, Papi M, Front. Bioeng. Biotechnol., 8, 383 (2020)
  20. Savini G, Orefice RL, J. Mater. Res. Technol., 9, 16387 (2020)
  21. Hakamada M, Kuromura T, Chen Y, Kusuda H, Mabuchi M, Mater. Trans., 48, 32 (2007)
  22. Srikanth M, Asmatulu R, Cluff K, Yao L, ACS Omega, 4, 5044 (2019)
  23. Chen P, et al., Electrospun Materials for Tissue Engineering and Biomedical Applications, p. 299, Woodhead Publishing (2017).
  24. Ginestra P, J. Mech. Behav. Biomed. Mater., 100, 103387 (2019)