화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 358-365, June, 2021
A multi-enzyme cascade reaction for the production of α,ω-dicarboxylic acids from free fatty acids
E-mail:
α,ω-Dicarboxylic acids (α,ω-DCAs) have numerous applications, as raw materials for producing various commodities and polymers in chemical industry. For example, dodecanedioic acid (DDDA), a monomer of nylon 612 polymer is used for numerous applications such as plasticizers and adhesive. In this study, firstly the enzymatic production of DDDA from corresponding v-hydroxy fatty acid was optimized using aldehyde reductase (AHR) and aldehyde dehydrogenase (ALDH), and the cofactor imbalance and proficient regeneration thereof, is a major hurdle for the effective biosynthesis. To circumvent this, NAD (P)H oxidases (NOXs) from Lactobacillus brevis (LbrNOX), Brevibacterium glutamicum (BreNOX) and Lactobacillus reuteri (LreNOX) were examined for the AHR/ALDH/NOX cascade and LreNOX was identified as suitable enzyme. Moreover, LreNOX was fused with AHR and employing this fusion protein in Escherichia. coli (E. coli) holding ALDH, nearly complete conversion (>99%) into DDDA was achieved from 30 mM of 12-hydroxy dodecanoic acid within 12 h of whole-cell biotransformation (2.2-fold improvement in productivity) turning out to be beneficial. Finally, the synthesis of DDDA from corresponding free fatty acid (dodecanoic acid), was performed by employing combination of AHR/ ALDH/NOX cascade with CYP153AL.m, where 2.3 mM (0.53 g/L) of DDDA was produced in one-pot one step.
  1. Gross RA, Kalra B, Science, 297, 803 (2002)
  2. Huf S, Krugener S, Hirth T, Rupp S, Zibek S, Eur. J. Lipid Sci. Technol., 113, 548 (2011)
  3. Lee H, Sugiharto YEC, Lee H, Jeon W, Ahn J, Lee H, Appl. Microbiol. Biotechnol., 103(4), 1545 (2019)
  4. Sultana N, Saify ZS, J. Enzyme Inhib. Med. Chem., 28, 1113 (2013)
  5. Seo JH, Lee SM, Lee J, Park JB, J. Biotechnol., 216, 158 (2015)
  6. Rosano GL, Ceccarelli EA, Front Microbiol., 5, 172 (2014)
  7. Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F, ACS Synth. Biol., 5, 200 (2016)
  8. Sathesh-Prabu C, Lee SK, J. Agric. Food Chem., 63, 8199 (2015)
  9. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD, Bio/Technol., 10, 894 (1992)
  10. Kim SK, Park YC, Appl. Microbiol. Biotechnol., 103(1), 191 (2019)
  11. Jeon EY, Seo JH, Kang WR, Kim MJ, Lee JH, Oh DK, Park JB, ACS Catalysis, 6, 7547 (2016)
  12. Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, von Bergen M, Schmid A, Buhler B, Biotechnol. Bioeng., 114(4), 874 (2017)
  13. Scheps D, Malca SH, Richter SM, Marisch K, Nestl BM, Hauer B, Microb. Biotechnol, 6, 694 (2013)
  14. Sathesh-Prabu C, Lee SK, J. Agric. Food Chem., 66, 3489 (2018)
  15. Jeon H, Yoon S, Ahsan M, Sung S, Kim GH, Sundaramoorthy U, Rhee SK, Yun H, Catalysts, 7 (2017)
  16. Riebel BR, Gibbs PR, Wellborn WB, Bommarius AB, Adv. Synth. Catal., 344, 1156 (2002)
  17. Lountos GT, Jiang R, Wellborn WB, Thaler TL, Bommarius AS, Orville AM, Biochemistry, 45(32), 9648 (2006)
  18. Hirano J, Miyamoto K, Ohta H, Appl. Microbiol. Biotechnol., 80(1), 71 (2008)
  19. Gao H, Tiwari MK, Kang YC, Lee JK, Bioorg. Med. Chem. Lett., 22, 1931 (2012)
  20. Gao H, Li J, Sivakumar D, Kim TS, Patel SKS, Kalia VC, Kim IW, Zhang YW, Lee JK, Int. J. Biol. Macromol., 123, 629 (2019)
  21. KB A, VM, K, J. Biol. Chem., 252, 4151 (1977)
  22. Joo SY, Yoo HW, Sarak S, Kim BG, Yun H, Catalysts, 9 (2019)
  23. Yoo HW, Kim J, Patil MD, Park BG, Joo SY, Yun H, Kim BG, Bioresour. Technol., 291, 121812 (2019)
  24. Yoon S, Patil MD, Sarak S, Jeon H, Kim GH, Khobragade TP, Sung S, Yun H, ChemCatChem, 11, 1898 (2019)
  25. Sugiharto YEC, Lee H, Fitriana AD, Lee H, Jeon W, Park K, Ahn J, Lee H, AMB Express, 8, 75 (2018)
  26. Bae JH, Park BG, Jung E, Lee PG, Kim BG, Appl. Microbiol. Biotechnol., 98(21), 8917 (2014)
  27. Cao Z, Gao H, Liu M, Jiao P, Biotechnol. J., 1, 68 (2006)
  28. Barbado C, Ramirez M, Blanco MA, Lopez-Barea J, Pueyo C, Curr. Microbiol., 8, 251 (1983)
  29. Kumar SR, Imlay JA, J. Bacteriol., 195, 4569 (2013)
  30. Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ, J. Bacteriol., 191, 4383 (2009)
  31. Aalbers FS, Fraaije MW, Chembiochem, 20, 51 (2019)
  32. Dishisha T, Sabet-Azad R, Arieta V, Hatti-Kaul R, J. Biotechnol., 289, 135 (2019)
  33. Zhang YH, Biotechnol. Adv., 29, 715 (2011)
  34. Lerchner A, Daake M, Jarasch A, Skerra A, Protein Eng. Des. Sel., 29, 557 (2016)
  35. Aalbers FS, Fraaije MW, Chembiochem, 20, 20 (2019)
  36. Jung E, Park BG, Yoo HW, Kim J, Choi KY, Kim BG, Appl. Microbiol. Biotechnol., 102(1), 269 (2018)
  37. Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH, Biotechnol. Bioeng., 108(3), 500 (2011)
  38. Malca SH, Scheps D, Kuhnel L, Venegas-Venegas E, Seifert A, Nestl BM, Hauer B, Chem. Commun., 48, 5115 (2012)
  39. Jung E, Park BG, Ahsan MM, Kim J, Yun H, Choi KY, Kim BG, Appl. Microbiol. Biotechnol., 100(24), 10375 (2016)
  40. Ahsan MM, Jeon H, NP S, Chang T, Yoo HW, Kim BG, Patil MD, Yun H, Biotechnol. J., 13, e17005 (2018)
  41. Hanahan D, J. Mole. Biol., 166, 557 (1983)
  42. Studier FW, Moffatt BA, J. Mol. Biol., 189, 113 (1986)