Journal of Industrial and Engineering Chemistry, Vol.98, 358-365, June, 2021
A multi-enzyme cascade reaction for the production of α,ω-dicarboxylic acids from free fatty acids
E-mail:
α,ω-Dicarboxylic acids (α,ω-DCAs) have numerous applications, as raw materials for producing various commodities and polymers in chemical industry. For example, dodecanedioic acid (DDDA), a monomer of nylon 612 polymer is used for numerous applications such as plasticizers and adhesive. In this study, firstly the enzymatic production of DDDA from corresponding v-hydroxy fatty acid was optimized using aldehyde reductase (AHR) and aldehyde dehydrogenase (ALDH), and the cofactor imbalance and proficient regeneration thereof, is a major hurdle for the effective biosynthesis. To circumvent this, NAD (P)H oxidases (NOXs) from Lactobacillus brevis (LbrNOX), Brevibacterium glutamicum (BreNOX) and Lactobacillus reuteri (LreNOX) were examined for the AHR/ALDH/NOX cascade and LreNOX was identified as suitable enzyme. Moreover, LreNOX was fused with AHR and employing this fusion protein in Escherichia. coli (E. coli) holding ALDH, nearly complete conversion (>99%) into DDDA was achieved from 30 mM of 12-hydroxy dodecanoic acid within 12 h of whole-cell biotransformation (2.2-fold improvement in productivity) turning out to be beneficial. Finally, the synthesis of DDDA from corresponding free fatty acid (dodecanoic acid), was performed by employing combination of AHR/ ALDH/NOX cascade with CYP153AL.m, where 2.3 mM (0.53 g/L) of DDDA was produced in one-pot one step.
- Gross RA, Kalra B, Science, 297, 803 (2002)
- Huf S, Krugener S, Hirth T, Rupp S, Zibek S, Eur. J. Lipid Sci. Technol., 113, 548 (2011)
- Lee H, Sugiharto YEC, Lee H, Jeon W, Ahn J, Lee H, Appl. Microbiol. Biotechnol., 103(4), 1545 (2019)
- Sultana N, Saify ZS, J. Enzyme Inhib. Med. Chem., 28, 1113 (2013)
- Seo JH, Lee SM, Lee J, Park JB, J. Biotechnol., 216, 158 (2015)
- Rosano GL, Ceccarelli EA, Front Microbiol., 5, 172 (2014)
- Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F, ACS Synth. Biol., 5, 200 (2016)
- Sathesh-Prabu C, Lee SK, J. Agric. Food Chem., 63, 8199 (2015)
- Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD, Bio/Technol., 10, 894 (1992)
- Kim SK, Park YC, Appl. Microbiol. Biotechnol., 103(1), 191 (2019)
- Jeon EY, Seo JH, Kang WR, Kim MJ, Lee JH, Oh DK, Park JB, ACS Catalysis, 6, 7547 (2016)
- Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, von Bergen M, Schmid A, Buhler B, Biotechnol. Bioeng., 114(4), 874 (2017)
- Scheps D, Malca SH, Richter SM, Marisch K, Nestl BM, Hauer B, Microb. Biotechnol, 6, 694 (2013)
- Sathesh-Prabu C, Lee SK, J. Agric. Food Chem., 66, 3489 (2018)
- Jeon H, Yoon S, Ahsan M, Sung S, Kim GH, Sundaramoorthy U, Rhee SK, Yun H, Catalysts, 7 (2017)
- Riebel BR, Gibbs PR, Wellborn WB, Bommarius AB, Adv. Synth. Catal., 344, 1156 (2002)
- Lountos GT, Jiang R, Wellborn WB, Thaler TL, Bommarius AS, Orville AM, Biochemistry, 45(32), 9648 (2006)
- Hirano J, Miyamoto K, Ohta H, Appl. Microbiol. Biotechnol., 80(1), 71 (2008)
- Gao H, Tiwari MK, Kang YC, Lee JK, Bioorg. Med. Chem. Lett., 22, 1931 (2012)
- Gao H, Li J, Sivakumar D, Kim TS, Patel SKS, Kalia VC, Kim IW, Zhang YW, Lee JK, Int. J. Biol. Macromol., 123, 629 (2019)
- KB A, VM, K, J. Biol. Chem., 252, 4151 (1977)
- Joo SY, Yoo HW, Sarak S, Kim BG, Yun H, Catalysts, 9 (2019)
- Yoo HW, Kim J, Patil MD, Park BG, Joo SY, Yun H, Kim BG, Bioresour. Technol., 291, 121812 (2019)
- Yoon S, Patil MD, Sarak S, Jeon H, Kim GH, Khobragade TP, Sung S, Yun H, ChemCatChem, 11, 1898 (2019)
- Sugiharto YEC, Lee H, Fitriana AD, Lee H, Jeon W, Park K, Ahn J, Lee H, AMB Express, 8, 75 (2018)
- Bae JH, Park BG, Jung E, Lee PG, Kim BG, Appl. Microbiol. Biotechnol., 98(21), 8917 (2014)
- Cao Z, Gao H, Liu M, Jiao P, Biotechnol. J., 1, 68 (2006)
- Barbado C, Ramirez M, Blanco MA, Lopez-Barea J, Pueyo C, Curr. Microbiol., 8, 251 (1983)
- Kumar SR, Imlay JA, J. Bacteriol., 195, 4569 (2013)
- Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ, J. Bacteriol., 191, 4383 (2009)
- Aalbers FS, Fraaije MW, Chembiochem, 20, 51 (2019)
- Dishisha T, Sabet-Azad R, Arieta V, Hatti-Kaul R, J. Biotechnol., 289, 135 (2019)
- Zhang YH, Biotechnol. Adv., 29, 715 (2011)
- Lerchner A, Daake M, Jarasch A, Skerra A, Protein Eng. Des. Sel., 29, 557 (2016)
- Aalbers FS, Fraaije MW, Chembiochem, 20, 20 (2019)
- Jung E, Park BG, Yoo HW, Kim J, Choi KY, Kim BG, Appl. Microbiol. Biotechnol., 102(1), 269 (2018)
- Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH, Biotechnol. Bioeng., 108(3), 500 (2011)
- Malca SH, Scheps D, Kuhnel L, Venegas-Venegas E, Seifert A, Nestl BM, Hauer B, Chem. Commun., 48, 5115 (2012)
- Jung E, Park BG, Ahsan MM, Kim J, Yun H, Choi KY, Kim BG, Appl. Microbiol. Biotechnol., 100(24), 10375 (2016)
- Ahsan MM, Jeon H, NP S, Chang T, Yoo HW, Kim BG, Patil MD, Yun H, Biotechnol. J., 13, e17005 (2018)
- Hanahan D, J. Mole. Biol., 166, 557 (1983)
- Studier FW, Moffatt BA, J. Mol. Biol., 189, 113 (1986)