Clean Technology, Vol.27, No.2, 182-189, June, 2021
활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성
Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon
E-mail:
초록
입상 활성탄(GAC)에 의한 disperse yellow 3(DY 3) 염료의 흡착을 초기농도, 접촉 시간, 온도 및 pH를 흡착변수로 하는 실험을 통해 등온흡착과 동력학적, 열역학적 파라미터에 대해 조사하였다. pH 변화실험에서 활성탄에 대한 DY 3의 흡착은 산성영역인 pH 3에서 흡착률이 가장 높았다. 이는 양(+)으로 하전된 활성탄 표면과 DY 3의 음이온(OH-) 사이의 정전기적 인력에 기인한 것으로 판단되었다. DY 3의 흡착평형자료로부터 Langmuir 등온흡착식에 가장 잘 맞았으며, 계산된 분리계수(RL) 값으로부터 활성탄이 DY 3을 효과적으로 제거할 수 있다는 것을 알았다. 또한, Temkin 식의 흡착열 관련 상수의 값이 20 J mol-1을 넘지 않아 물리 흡착 공정임을 알 수 있었다. 동력학 실험은 농도별 실험과 온도별 실험 모두 유사 이차 속도식이 오차율10.72% 이내였다. Weber와 Morris의 입자내 확산 모델의 플로트는 두 단계의 직선으로 나타났다. Stage 2(입자내 확산)의 기울기가 stage 1(경계층 확산)의 기울기보다 작게 나타나 입자 내 확산이 속도지배단계인 것을 확인하였다. 활성탄에 의한 DY3 흡착의 자유에너지 변화는 298 ~ 318 K에서 모두 음의 값을 나타냈으며, 온도가 증가할수록 자발성이 더 높아졌다. 활성탄에 대한 DY 3의 흡착반응의 엔탈피 변화는 0.65 kJ mol-1 로 흡열반응이었으며, 엔트로피 변화는 2.14 J mol-1 K-1로 양의 값(positive value)을 나타냈다.
The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.
- Malinauskiene L, Bruze M, Ryberg K, Zimerson E, Isaksson M, Contact Dermatitis, 68(2), 65 (2013)
- Cho YD, Choi EK, Park YH, Proceedings of the Korean Society of Dyers and Finishers Conference, 267, (2004).
- Chemical Book, Disperse Yellow 3, https://www.chemicalbook.com/ChemicalProductProperty_ EN_CB9679814.htm, (2021).
- Yue QY, Li Q, Gao BY, Wang Y, Sep. Puri. Technol., 54, 279 (2007)
- Hashemian S, Sadeghi B, Mozafari F, Salehifar H, Salari K, Pol. J. Environ. Stud., 22(5), 1363 (2013)
- Erdogan T, Erdogan OF, Anal. Lett., 49(7), 917 (2016)
- Mutar HR, Jasim KK, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr. 2021.04.003.
- Moneer AA, El-Mallah NM, El-Sadaawy MM, Khedawy M, Ramadan MS, Alex. Eng. J., 60(4), 4139 (2021)
- Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan I nst. Chem. Eng., 71, 47 (2017)
- Lee JJ, Clean Technol., 26(2), 122 (2020)
- Lee JJ, Clean Technol., 25(1), 56 (2019)
- Renita AA, Kumar PS, Jabasingh SA, Bioresour. Technol. Rep., 7, 100300 (2019)
- Jalalian N, Nabavi SR, Surf. Interfaces, 21, 100779 (2020)
- Akbarnejad S, Amooey AA, Ghasemi S, Microchem. J., 149, 103966 (2019)
- Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y, Data Brief, 21, 1008 (2018)
- Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotoxicol. Environ. Saf., 163, 365 (2018)
- Belbachir I, Makhoukhi B, J. Taiwan Inst. Chem. Eng., 75, 105 (2017)
- de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
- Lee JJ, Appl. Chem. Eng., 31(2), 164 (2020)
- Al-Kadhi NS, Egypt. J. Aquat. Res., 45(3), 231 (2019)
- Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)