화학공학소재연구정보센터
Clean Technology, Vol.27, No.2, 190-197, June, 2021
Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구
Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst
E-mail:
초록
펄프 및 제지산업에서 목재의 셀룰로오스 성분 활용 후 남는 부산물인 크라프트 리그닌(kraft lignin)은 촉매적 저분자화 공정을 통해 바이오연료나 고부가가치 페놀 단량체로 전환될 수 있다. 본 연구에서는 크라프트 리그닌의 효율적인 저분자화를 위한 촉매로 수소화 금속 및 산-염기점을 동시에 지니는 Ru-Mg-Al-oxide 복합 촉매를 제조하고, 리그닌 분해 성능을 평가하고자 하였다. 촉매 내 다양한 활성점들(산점, 염기점, 수소화 금속)이 리그닌 분해 반응에 미치는 영향을 파악하기 위해 MgO, Mg-Al-oxide, Ru-Mg-Al-oxide의 세 가지 촉매를 제조하여 초임계 에탄올 용매 상에서 리그닌 분해 반응을 수행하였고, 리그닌분해 성능은 바이오오일(bio-oil) 수율 및 분자량, 그리고 페놀계 단량체 수율을 통해 평가하였다. 그 결과, Ru-Mg-Al-oxide 촉매가 다양한 활성점들의 시너지 효과로 인해 가장 높은 수율의 바이오오일 및 페놀 단량체들을 생산한다는 것을 확인하였다. Ru-Mg-Al-oxide 촉매 상에서 분해 효율을 최적화하기 위해 다양한 반응 조건(온도, 시간, 촉매양)에 따른 분해 효율을 평가하였고, 최종적으로 반응온도 350 ℃, 리그닌 대비 촉매 비율 10%, 4 h 반응을 통해 72%의 높은 바이오오일 수율과 무촉매 대비 3.5배 이상 증가한 페놀 단량체를 생산할 수 있었다.
Kraft lignin is a by-product of the pulp and paper industry, obtained as a black liquor after the extraction of cellulose from wood through the Kraft pulping process. Right now, kraft lignin is utilized as a low-grade boiler fuel to provide heat and power but can be converted into high-calorific biofuels or high-value chemicals once the efficient catalytic depolymerization process is developed. In this work, the multi-functional catalyst of Ru-Mg-Al-oxide, which contains hydrogenation metals, acid, and base sites for the effective depolymerization of kraft lignin are prepared, and its lignin depolymerization efficiency is evaluated. In order to understand the role of different active sites in the lignin depolymerization, the three different catalysts of MgO, Mg-Al-oxide, and Ru-Mg-Al-oxide were synthesized, and their lignin depolymerization activity was compared in terms of the yield and the average molecular weight of bio-oil, as well as the yield of phenolic monomers contained in the bio-oil. Among the catalysts tested, the Ru-Mg-Al-oxide catalyst exhibited the highest yield of bio-oil and phenolic monomers due to the synergy between active sites. Furthermore, in order to maximize the extent of lignin depolymerization over the Ru-Mg-Al-oxide, the effects of reaction conditions (i.e., temperature, time, and catalyst loading amount) on the lignin depolymerization were investigated. Overall, the highest bio-oil yield of 72% and the 3.5 times higher yield of phenolic monomers than that without a catalyst were successfully achieved at 350 ℃ and 10% catalyst loading after 4 h reaction time.
  1. Ha JM, Hwang KR, Kim YM, Jae J, Kim KH, Lee HW, Kim JY, Park YK, Renew. Sust. Energ. Rev., 111, 422 (2019)
  2. Bbosa D, Mba-Wright M, Brown RC, Biofuel Bioprod. Biorefin., 12(3), 497 (2018)
  3. Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T, Chem. Rev., 115(21), 11559 (2015)
  4. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA, Chem. Eur. J., 17(21), 5939 (2011)
  5. Kristianto I, Limarta SO, Lee H, Ha JM, Suh DJ, Jae J, Bioresour. Technol., 234, 424 (2017)
  6. Chu S, Subrahmanyam AV, Huber GW, Green Chem., 15(1), 125 (2013)
  7. Van den Bosch S, Renders T, Kennis S, Koelewijn SF, et al., Green Chem., 19(14), 3313 (2017)
  8. Limarta SO, Ha HM, Park YK, Lee HJ, Suh DJ, Jae JH, J. Ind. Eng. Chem., 57, 45 (2018)
  9. Kim JY, Park SY, Choi IG, Choi JW, Chem. Eng. J., 336, 640 (2018)
  10. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J, Energy Environ. Sci., 6(3), 994 (2013)
  11. Kim M, Son D, Choi JW, Jae J, Suh DJ, Ha JM, Lee KY, Chem. Eng. J., 309, 187 (2017)
  12. Shuai L, Saha B, Green Chem., 19(16), 3752 (2017)
  13. Kloekhorst A, Shen Y, Yie Y, Fang M, Heeres HJ, Biomass Bioenergy, 80, 147 (2015)
  14. Huang X, Koranyi TI, Boot MD, Hensen EJ, ChemSusChem, 7(8), 2276 (2014)
  15. Huang X, Atay C, Koranyi TI, Boot MD, Hensen EJM, ACS Catal., 5(12), 7359 (2015)
  16. Huang X, Koranyi TI, Boot MD, Hensen EJ, Green Chem., 17(11), 4941 (2015)
  17. Limarta SO, Kim H, Ha JM, Park YK, Jae J, Chem. Eng. J., 396, 125175 (2020)