화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 264-270, July, 2021
Highly bioactive and low cytotoxic Si-based NiOOH nanoflowers targeted against various bacteria, including MRSA, and their potential antibacterial mechanism
E-mail:,
With the emergence of new drug-resistant microorganisms, the development of effective antimicrobial agents is urgently required. Core-shell-structured nanomaterials have received considerable attention as antibacterial agents. We prepared a bioactive core-shell-structured silicon-based NiOOH nanoflower (Si@NiOOH) targeted against various bacteria using a modified chemical bath deposition method. Further, we investigated its potential antibacterial mechanism by evaluating electrochemical properties in a redox reaction with ascorbic acid, measuring metal ion release, and analyzing the surface area. The bactericidal rate of Si@NiOOH at 200 mg/mL towards Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus was as high as 99.9%. Si@NiOOH maintained its original morphology after killing the bacteria and exhibited negligible cytotoxicity towards mouse embryonic fibroblasts. The excellent antibacterial activities of Si@NiOOH are possibly derived from its high surface area, providing a wide active site attached to the cell wall, and the high oxidative potency of the Ni(III) cations existing on its surface. The high antibacterial activity and low cytotoxicity of the nanoflower make it a promising tool for promoting wound healing and for use with medical devices and implants.
  1. Chellat MF, Raguz L, Riedl R, Angew. Chem.-Int. Edit., 55, 6600 (2016)
  2. Landis RF, Gupta A, Lee YW, Wang LS, Golba B, Couillaud B, Ridolfo R, Das R, Rotello VM, ACS Nano, 11, 946 (2017)
  3. Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, et al., ACS Nano, 11, 4428 (2017)
  4. Gwon K, Kim E, Tae G, Acta Biomater., 49, 284 (2017)
  5. Sanchez-Lopez E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al., Nanomaterials, 10, 292 (2020)
  6. Choi D, Park J, Heo J, Oh TI, Lee EA, Hong J, ACS Appl. Mater. Interfaces, 9, 12264 (2017)
  7. Choi D, Heo J, Milan JA, Oreffo ROC, Dawson JI, Hong J, et al., Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 118, 111440 (2021)
  8. Behzad F, Naghib SM, kouhbanani MAJ, Tabatabaei SN, Zare Y, Rhee KY, J. Ind. Eng. Chem., 94, 92 (2021)
  9. Liu J, Rojas-Andrade MD, Chata G, Peng Y, Roseman G, Lu JE, et al., Nanoscale, 10, 158 (2018)
  10. Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al., ACS Nano, 8, 374 (2014)
  11. Gao T, Fan H, Wang X, Gao Y, Liu W, Chen W, et al., ACS Appl. Mater. Interfaces, 9, 25738 (2017)
  12. Tang Q, Liu J, Shrestha LK, Ariga K, Ji A, ACS Appl. Mater. Interfaces, 8, 18922 (2016)
  13. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, et al., ACS Nano, 10, 11000 (2016)
  14. Fei J, Zhao J, Du C, Wang A, Zhang H, Dai L, et al., ACS Nano, 8, 8529 (2014)
  15. Hui L, Huang J, Chen G, Zhu Y, Yang L, ACS Appl. Mater. Interfaces, 8, 20 (2016)
  16. Li N, Zeng C, Qin Q, Zhang B, Chen L, Luo Z, Nanomedicine, 13, 2901 (2018)
  17. Wang J, Gu H, Molecules, 20, 17070 (2015)
  18. Tetteh EB, Lee HY, Kim SH, Ham HC, Tran TN, Shin CH, et al., ACS Energy Lett., 5, 1601 (2020)
  19. Vinardell OM, Mitjans M, Nanomaterials, 5, 1004 (2015)
  20. El-Shafai N, El-Khouly ME, El-Kemary M, Ramadan M, Eldesoukey I, Masoud M, RSC Adv., 9, 3704 (2019)
  21. Sinhamahapatra A, Jeon JP, Yu JS, Energy Environ. Sci., 8, 3539 (2015)
  22. Jang JH, Choi YH, Tanaka M, Choi JH, J. Ind. Eng. Chem., 83, 46 (2020)
  23. Tran TN, Lee HY, Park JD, Kang TH, Lee BJ, Yu JS, ACS Appl. Energy Mater., 3, 6310 (2020)
  24. Phan DN, Rebia RA, Saito Y, Kharaghani D, Khatri M, Tanaka T, Lee HI, Kim IS, J. Ind. Eng. Chem., 85, 258 (2020)
  25. Mohammad M, Ahmadpoor F, Shojaosadati SA, ACS Omega, 5, 18766 (2020)
  26. Cao YC, Jin R, Mirkin CA, Science, 297, 1536 (2002)
  27. Dick LA, McFarland AD, Haynes CL, Van Duyne RP, J. Phys. Chem. B, 106, 853 (2002)
  28. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL, Anal. Chem., 75, 2377 (2003)
  29. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al., Proc. Natl Acad. Sci. U. S. A., 100, 13549 (2003)
  30. Gopal J, Hasan N, Manikandan M, Wu HF, Sci. Rep., 3, 1260 (2013)
  31. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI, J. Nanosci. Nanotechnol., 5, 244 (2005)
  32. Srisitthiratkul C, Pongsorrarith V, Intasanta N, Appl. Surf. Sci., 257(21), 8850 (2011)
  33. El-Shishtawy RM, Asiri AM, Abdelwahed NA, Al-Otaibi MM, Cellulose, 18, 75 (2011)
  34. Zhu Z, Su M, Ma L, Ma L, Liu D, Wang Z, Talanta, 117, 449 (2013)
  35. Deng CH, Gong JL, Zeng GM, Zhang P, Song B, Zhang XG, et al., Chemosphere, 184, 347 (2017)
  36. Siddiqui H, Qureshi MS, Haque FZ, Nano-Micro Lett., 12, 29 (2020)
  37. Ananth A, Dharaneedharan S, Seo HJ, Heo MS, Boo JH, Chem. Eng. J., 322, 742 (2017)
  38. Lee TC, Abdullah HZ, Koshy P, Idris MI, Mat. Lett., 216, 256 (2018)
  39. Li N, Zeng C, Qin Q, Zhang B, Chen L, Luo Z, Nanomedicine, 13, 2901 (2018)
  40. Yao H, Jin L, Sue HJ, Sumi Y, Nishimura R, J. Mater. Chem., 1, 10783 (2013)
  41. Saghatforoush LA, Mehdizadeh R, Chalabian R, Transition Met. Chem., 35, 903 (2010)
  42. Cai X, Lin M, Tan S, Mai W, Zhang Y, Liang Z, et al., Carbon, 50, 3407 (2012)
  43. Jayeoye TJ, Nwabor OF, Rujiralai T, J. Ind. Eng. Chem., 89, 288 (2020)
  44. Pal S, Tak YK, Song JM, Appl. Environ. Microbiol., 73, 1712 (2007)
  45. Kyriacou SV, Brownlow WJ, Xu XHN, Biochemistry, 43, 140 (2004)
  46. Ma J, Zhang J, Xiong Z, Yong Y, Zhao X, J. Mater. Chem., 21, 3350 (2011)
  47. Knetsch ML, Koole LH, Polymer, 3, 340 (2011)
  48. Shameli K, Ahmad MB, Zargar M, Yunus W, Ibrahim NA, Shabanzadeh P, et al., Int. J. Nanomed, 6, 271 (2011)
  49. Lin N, Han Y, Wang LB, Zhou JB, Zhou J, Zhu YC, et al., Angew. Chem.-Int. Edit., 54, 3822 (2015)
  50. Prakash S, Zhang CF, Park JD, Razmjooei F, Yu JS, J. Colloid Interface Sci., 534, 47 (2019)
  51. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H, J. Nanobiotechnol., 10, 19 (2012)
  52. Van Phu D, Ang Quoc L, Duy NN, Lan NTK, Du BD, Luan LQ, et al., Nanoscale Res. Lett., 9, 162 (2014)
  53. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu BH, Doktycz MJ, Langmuir, 28(5), 2727 (2012)
  54. Lee KJ, Browning LM, Nallathamby PD, Xu XH, Chem. Res. Toxicol., 26, 904 (2013)
  55. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al., J Nanomaterials, 720654 (2015)
  56. Zhang C, Kang TH, Yu JS, Nano Res., 11, 233 (2018)
  57. Villarroel-Rocha J, Barrera D, Sapag K, Microporous Mesoporous Mater., 200, 68 (2014)
  58. Xia C, Yanjun X, Ning W, Sens. Actuators B-Chem., 153, 434 (2011)
  59. Jo JH, Kim CH, Huh S, Kim Y, Lee DN, Dalton Trans., 48, 8084 (2019)
  60. Gwon K, Han I, Lee S, Kim Y, Lee DN, ACS Appl. Mater. Interfaces, 12, 20234 (2020)
  61. Gwon K, Jo EJ, Sahu A, Lee JY, Kim MG, Tae G, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 90, 77 (2018)
  62. Cheng X, Liu J, Wang L, Wang L, Wang R, Liu Z, Zhuo R, RSC Adv., 6, 101334 (2016)
  63. Jeong W, Jo S, Park J, Kwon B, Choi T, Chae A, SY, et al., Mater. Sci., 53, 2443 (2018)
  64. Kwan KW, Li SJ, Hau NY, Li WD, Feng SP, Ngan AHW, Sci. Robot., 3, eaat40 (2018)
  65. Xiao X, Wang Y, Cui B, Zhang X, Zhang D, Xu X, New J. Chem., 44, 4558 (2020)
  66. Singh J, Kumar SR, Soni RK, J. Alloy. Compd., 849, 156502 (2020)
  67. Mali SS, Betty CA, Bhosale PN, Patil PS, Hong CK, Sci. Rep., 4, 5451 (2014)
  68. Xi YY, Huang BQ, Djurisic AB, Chan CMN, Leung FCC, Chan WK, Au DTW, Thin Solid Films, 517(24), 6527 (2009)
  69. Perdikaki A, Galeou A, Pilatos G, Prombona A, Karanikolos GN, Langmuir, 34(37), 11156 (2018)
  70. Queka JA, Lamb SM, Sina JC, Mohamedc AR, J. Photochem. Photobiol. B-Biol., 187, 66 (2018)