Journal of Industrial and Engineering Chemistry, Vol.99, 299-308, July, 2021
Dual-ligand modulation approach for improving supercapacitive performance of hierarchical zinc.nickel.iron phosphide nanosheet-based electrode
E-mail:, ,
Mixed nanostructured transition metal-based complex materials with hierarchical and porous
architectures, built from interconnected nano-building blocks, are considered as high-performance positive electrode materials in supercapacitors (SCs). Herein, zinc.nickel.iron phosphide(ZnNiFe-P) and Zn.Ni.Fe.hydroxide precursors (ZnNiFe-OH) were combined in a 3D hierarchical and porous structure (ZnNiFe-(P/OH)) to improve their durability and electrochemical activity by incorporating a dual ligand synergistic modulation strategy. The 3D ZnNiFe.(P/OH) architectures, comprising perfectly aligned nanosheet arrays (NSA), were successfully grown on Ni foam using a facile hydrothermal process followed by partial phosphorization. The dual-ligand ZnNiFe.(P/OH) electrode exhibited excellent specific capacitance/areal capacitance (1708 F g-1/5.64 F cm-2 for 1 A g-1), high rate performance (62% upto 15 A g-1) and good cycle life. Moreover, the ZnNiFe.(P/OH) NSA positive electrode was coupled with an activated carbon negative electrode to design an asymmetric supercapacitor device. The device delivered an excellent capacitance of 187 F g-1 at 0.8 A g-1, a superior energy density of ~58.4 W h kg-1 at 600 W kg-1, and an excellent power density of 11250 W kg-1 at 34.4 W h kg-1 while maintaining good cycling performance (88% after 5000 cycles).
- Li J, Liu Z, Zhang Q, Cheng Y, Zhao B, Dai S, Wu HH, Zhang K, Ding D, Wu Y, Liu M, Wang MS, Nano Energy, 57, 22 (2019)
- Bandyopadhyay P, Saeed G, Kim NH, Jeong SM, Lee JH, Appl. Surf. Sci., 542, 148564 (2021)
- Legend A, Basiony NME, Heakal FET, Elkholy AE, J. Power Sources, 466, 228294 (2020)
- Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389 (2018)
- Li X, Elshahawy AM, Guan C, Wang J, Small, 13, 170153 (2017)
- Bandyopadhyay P, Nguyen TT, Kim NH, Lee JH, Chem. Eng. J., 333, 170 (2018)
- Wan L, Chen D, Liu J, Zhang Y, Chen J, Xie M, Du C, J. Power Sources, 465, 228293 (2020)
- Xu YQ, Hou SJ, Yang G, Wang XJ, Lu T, Pan LK, Electrochim. Acta, 285, 192 (2018)
- Ghosh S, Yong WD, Jin EM, Polaki SR, Jeong SM, Jun HB, Korean J. Chem. Eng., 36(2), 312 (2019)
- Liang H, Xia C, Jiang Q, Gandi AN, Schwingenschlogl U, Alshareef HN, Nano Energy, 35, 331 (2017)
- Yu L, Guan B, Xiao W, Lou XWD, Adv. Eng. Mater., 5, 150098 (2015)
- Li X, Wu H, Elshahawy AM, Wang L, Pennycook SJ, Guan C, Wang J, Adv. Funct. Mater, 28, 180003 (2018)
- Zhou Q, Gong Y, Tao K, Electrochim. Acta, 320, 134582 (2019)
- Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH, Chem. Eng. J., 308, 1174 (2017)
- Nagaraju G, Sekhar SC, Bharat LK, Yu JS, ACS Nano, 11, 10860 (2017)
- Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
- Bera S, Lee SA, Lee WJ, Ilka M, Kim JH, Kim CM, Khan H, Jang HW, Kwon SH, ACS Appl. Mater. Interfaces, 12, 48486 (2020)
- Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D, Appl. Phys. A-Mater. Sci. Process., 82, 599 (2006)
- Jiang H, Zhao T, Li C, Ma J, J. Mater. Chem., 21, 3818 (2011)
- Zhou K, Zhou WJ, Yang LJ, Lu J, Cheng S, Mai WJ, Tang ZH, Li LG, Chen SW, Adv. Funct. Mater., 25(48), 7530 (2015)
- Song W, Wu J, Wang G, Tang S, Chen G, Cui M, Meng X, Adv. Funct. Mater., 28, 180462 (2018)
- Guo D, Zhang Y, Sun W, Chu D, Li B, Tan L, Ma H, Pang H, Wang X, Zhang L, ACS Appl. Mater. Interfaces, 11, 41580 (2019)
- Lan Y, Zhang H, Zong Y, Li X, Sun Y, Feng J, Wang Y, Zheng X, Du Y, Nanoscale, 10, 11775 (2018)
- Chen HC, Jiang S, Xu B, Huang C, Hu Y, Qin Y, He M, Cao H, J. Mater. Chem. A, 7, 6241 (2019)
- He S, Li Z, Mi H, Ji C, Guo F, Zhang X, Li Z, Du Q, Qiu J, J. Power Sources, 467, 228324 (2020)
- Wang SF, Xiao ZY, Zhai SR, Wang GX, An QD, Yang DJ, Electrochim. Acta, 309, 197 (2019)
- Wan L, He C, Chen D, Liu J, Zhang Y, Du C, Xie M, Chen J, Chem. Eng. J., 399, 125778 (2020)
- Wang D, Kong L, Liu M, Luo Y, Kang L, Chem. Eur. J., 21, 17897 (2015)
- Zhang GQ, Wu HB, Holster HE, Park MBC, Lou XW, Energy Environ. Sci., 5, 9453 (2012)
- Zhang GQ, Lou XW, Adv. Mater., 25(7), 976 (2013)
- Peng L, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z, ACS Catal., 7, 8184 (2017)
- Bandyopadhyay P, Saeed G, Kim NH, Lee JH, Chem. Eng. J., 384, 123357 (2020)
- Liu M, Yang L, Liu T, Tang Y, Luo S, Liu C, Zeng Y, J. Mater. Chem. A, 5, 8608 (2017)
- Wang P, Pu Z, Li Y, Wu L, Tu Z, Jiang M, Kou Z, Amiinu IS, Mu S, ACS Appl. Mater. Interfaces, 9, 26001 (2017)
- He W, Wang C, Li H, Deng X, Xu X, Zhai T, Adv. Eng. Mater., 7, 170098 (2017)
- Wang J, Ma X, Qu F, Asiri AM, Sun X, Inorg. Chem., 56, 1041 (2017)
- Shabangoli Y, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB, Energy Stor. Mater., 11, 282 (2018)
- Ding R, Li XD, Shi W, Xu QL, Liu EH, Chem. Eng. J., 320, 376 (2017)
- Liang H, Li L, Meng F, Dang L, Zhuo J, Forticaux A, Wang Z, Jin S, Chem. Mater., 27, 5702 (2015)
- Liu C, Zhu H, Zhang Z, Hao J, Wu Y, Guan J, Lu S, Duan F, Zhang M, Du M, Sustainable Energy Fuels, 3, 3518 (2019)
- Li RQ, Wang BL, Gao T, Xu C, Jiang X, Zeng J, Bando Y, Hu P, Li Y, Wang XB, Nano Energy, 58, 870 (2019)
- Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB, Kang L, Electrochim. Acta, 215, 114 (2016)
- Jin YH, Zhao CC, Wang L, Jiang QL, Ji CW, He XM, Int. J. Hydrog. Energy, 43(7), 3697 (2018)
- Li R, Xu J, Lu C, Huang Z, Wu Q, Ba J, Tang T, Meng D, Luo W, Electrochim. Acta, 357, 136873 (2020)
- Kim TH, Veerasubramani GK, Kim SJ, J. Ind. Eng. Chem., 61, 181 (2018)
- Hercule KM, Wei Q, Khan AM, Zhao Y, Tian X, Mai L, Nano Lett., 13, 5685 (2013)
- Li W, Zhang B, Lin R, Ho-Kimura S, He G, Zhou X, Hu J, Parkin IP, Adv. Funct. Mater., 28, 170593 (2018)
- Xu Y, Xiong S, Weng S, Wang J, Wang J, Lin H, Jiao Y, New J. Chem., 44, 6810 (2020)
- Chen X, Cheng M, Chen D, Wang R, ACS Appl. Mater. Interfaces, 8, 3892 (2016)