화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 299-308, July, 2021
Dual-ligand modulation approach for improving supercapacitive performance of hierarchical zinc.nickel.iron phosphide nanosheet-based electrode
E-mail:, ,
Mixed nanostructured transition metal-based complex materials with hierarchical and porous architectures, built from interconnected nano-building blocks, are considered as high-performance positive electrode materials in supercapacitors (SCs). Herein, zinc.nickel.iron phosphide(ZnNiFe-P) and Zn.Ni.Fe.hydroxide precursors (ZnNiFe-OH) were combined in a 3D hierarchical and porous structure (ZnNiFe-(P/OH)) to improve their durability and electrochemical activity by incorporating a dual ligand synergistic modulation strategy. The 3D ZnNiFe.(P/OH) architectures, comprising perfectly aligned nanosheet arrays (NSA), were successfully grown on Ni foam using a facile hydrothermal process followed by partial phosphorization. The dual-ligand ZnNiFe.(P/OH) electrode exhibited excellent specific capacitance/areal capacitance (1708 F g-1/5.64 F cm-2 for 1 A g-1), high rate performance (62% upto 15 A g-1) and good cycle life. Moreover, the ZnNiFe.(P/OH) NSA positive electrode was coupled with an activated carbon negative electrode to design an asymmetric supercapacitor device. The device delivered an excellent capacitance of 187 F g-1 at 0.8 A g-1, a superior energy density of ~58.4 W h kg-1 at 600 W kg-1, and an excellent power density of 11250 W kg-1 at 34.4 W h kg-1 while maintaining good cycling performance (88% after 5000 cycles).
  1. Li J, Liu Z, Zhang Q, Cheng Y, Zhao B, Dai S, Wu HH, Zhang K, Ding D, Wu Y, Liu M, Wang MS, Nano Energy, 57, 22 (2019)
  2. Bandyopadhyay P, Saeed G, Kim NH, Jeong SM, Lee JH, Appl. Surf. Sci., 542, 148564 (2021)
  3. Legend A, Basiony NME, Heakal FET, Elkholy AE, J. Power Sources, 466, 228294 (2020)
  4. Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389 (2018)
  5. Li X, Elshahawy AM, Guan C, Wang J, Small, 13, 170153 (2017)
  6. Bandyopadhyay P, Nguyen TT, Kim NH, Lee JH, Chem. Eng. J., 333, 170 (2018)
  7. Wan L, Chen D, Liu J, Zhang Y, Chen J, Xie M, Du C, J. Power Sources, 465, 228293 (2020)
  8. Xu YQ, Hou SJ, Yang G, Wang XJ, Lu T, Pan LK, Electrochim. Acta, 285, 192 (2018)
  9. Ghosh S, Yong WD, Jin EM, Polaki SR, Jeong SM, Jun HB, Korean J. Chem. Eng., 36(2), 312 (2019)
  10. Liang H, Xia C, Jiang Q, Gandi AN, Schwingenschlogl U, Alshareef HN, Nano Energy, 35, 331 (2017)
  11. Yu L, Guan B, Xiao W, Lou XWD, Adv. Eng. Mater., 5, 150098 (2015)
  12. Li X, Wu H, Elshahawy AM, Wang L, Pennycook SJ, Guan C, Wang J, Adv. Funct. Mater, 28, 180003 (2018)
  13. Zhou Q, Gong Y, Tao K, Electrochim. Acta, 320, 134582 (2019)
  14. Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH, Chem. Eng. J., 308, 1174 (2017)
  15. Nagaraju G, Sekhar SC, Bharat LK, Yu JS, ACS Nano, 11, 10860 (2017)
  16. Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
  17. Bera S, Lee SA, Lee WJ, Ilka M, Kim JH, Kim CM, Khan H, Jang HW, Kwon SH, ACS Appl. Mater. Interfaces, 12, 48486 (2020)
  18. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D, Appl. Phys. A-Mater. Sci. Process., 82, 599 (2006)
  19. Jiang H, Zhao T, Li C, Ma J, J. Mater. Chem., 21, 3818 (2011)
  20. Zhou K, Zhou WJ, Yang LJ, Lu J, Cheng S, Mai WJ, Tang ZH, Li LG, Chen SW, Adv. Funct. Mater., 25(48), 7530 (2015)
  21. Song W, Wu J, Wang G, Tang S, Chen G, Cui M, Meng X, Adv. Funct. Mater., 28, 180462 (2018)
  22. Guo D, Zhang Y, Sun W, Chu D, Li B, Tan L, Ma H, Pang H, Wang X, Zhang L, ACS Appl. Mater. Interfaces, 11, 41580 (2019)
  23. Lan Y, Zhang H, Zong Y, Li X, Sun Y, Feng J, Wang Y, Zheng X, Du Y, Nanoscale, 10, 11775 (2018)
  24. Chen HC, Jiang S, Xu B, Huang C, Hu Y, Qin Y, He M, Cao H, J. Mater. Chem. A, 7, 6241 (2019)
  25. He S, Li Z, Mi H, Ji C, Guo F, Zhang X, Li Z, Du Q, Qiu J, J. Power Sources, 467, 228324 (2020)
  26. Wang SF, Xiao ZY, Zhai SR, Wang GX, An QD, Yang DJ, Electrochim. Acta, 309, 197 (2019)
  27. Wan L, He C, Chen D, Liu J, Zhang Y, Du C, Xie M, Chen J, Chem. Eng. J., 399, 125778 (2020)
  28. Wang D, Kong L, Liu M, Luo Y, Kang L, Chem. Eur. J., 21, 17897 (2015)
  29. Zhang GQ, Wu HB, Holster HE, Park MBC, Lou XW, Energy Environ. Sci., 5, 9453 (2012)
  30. Zhang GQ, Lou XW, Adv. Mater., 25(7), 976 (2013)
  31. Peng L, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z, ACS Catal., 7, 8184 (2017)
  32. Bandyopadhyay P, Saeed G, Kim NH, Lee JH, Chem. Eng. J., 384, 123357 (2020)
  33. Liu M, Yang L, Liu T, Tang Y, Luo S, Liu C, Zeng Y, J. Mater. Chem. A, 5, 8608 (2017)
  34. Wang P, Pu Z, Li Y, Wu L, Tu Z, Jiang M, Kou Z, Amiinu IS, Mu S, ACS Appl. Mater. Interfaces, 9, 26001 (2017)
  35. He W, Wang C, Li H, Deng X, Xu X, Zhai T, Adv. Eng. Mater., 7, 170098 (2017)
  36. Wang J, Ma X, Qu F, Asiri AM, Sun X, Inorg. Chem., 56, 1041 (2017)
  37. Shabangoli Y, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB, Energy Stor. Mater., 11, 282 (2018)
  38. Ding R, Li XD, Shi W, Xu QL, Liu EH, Chem. Eng. J., 320, 376 (2017)
  39. Liang H, Li L, Meng F, Dang L, Zhuo J, Forticaux A, Wang Z, Jin S, Chem. Mater., 27, 5702 (2015)
  40. Liu C, Zhu H, Zhang Z, Hao J, Wu Y, Guan J, Lu S, Duan F, Zhang M, Du M, Sustainable Energy Fuels, 3, 3518 (2019)
  41. Li RQ, Wang BL, Gao T, Xu C, Jiang X, Zeng J, Bando Y, Hu P, Li Y, Wang XB, Nano Energy, 58, 870 (2019)
  42. Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB, Kang L, Electrochim. Acta, 215, 114 (2016)
  43. Jin YH, Zhao CC, Wang L, Jiang QL, Ji CW, He XM, Int. J. Hydrog. Energy, 43(7), 3697 (2018)
  44. Li R, Xu J, Lu C, Huang Z, Wu Q, Ba J, Tang T, Meng D, Luo W, Electrochim. Acta, 357, 136873 (2020)
  45. Kim TH, Veerasubramani GK, Kim SJ, J. Ind. Eng. Chem., 61, 181 (2018)
  46. Hercule KM, Wei Q, Khan AM, Zhao Y, Tian X, Mai L, Nano Lett., 13, 5685 (2013)
  47. Li W, Zhang B, Lin R, Ho-Kimura S, He G, Zhou X, Hu J, Parkin IP, Adv. Funct. Mater., 28, 170593 (2018)
  48. Xu Y, Xiong S, Weng S, Wang J, Wang J, Lin H, Jiao Y, New J. Chem., 44, 6810 (2020)
  49. Chen X, Cheng M, Chen D, Wang R, ACS Appl. Mater. Interfaces, 8, 3892 (2016)