화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.2, 312-320, February, 2019
Mesoporous carbon nanofiber engineered for improved supercapacitor performance
E-mail:,
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode.
  1. Lin Z, Goikolea E, Balducci A, Naoi K, Taberna PL, Salanne M, Yushin G, Simon P, Mater. Today, 21, 419 (2018)
  2. Conway BE, Electrochemical supercapacitors, Kluwer Academic/Plenum Publishers (1999).
  3. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653 (2017)
  4. Xia L, Yu L, Hu D, Chen GZ, Mater. Chem. Front., 1, 584 (2017)
  5. Inagaki M, Konno H, Tanaike O, J. Power Sources, 195(24), 7880 (2010)
  6. Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389 (2018)
  7. Jin EM, Lim JG, Jeong SM, J. Ind. Eng. Chem., 54, 421 (2017)
  8. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, J. Power Sources, 401, 37 (2018)
  9. Ghosh S, Polaki SR, Ajikumar P, Krishna NG, Kamruddin M, Indian J. Phys., 92, 337 (2018)
  10. Schutter C, Ramirez-Castro C, Oljaca M, Passerini S, Winter M, Balducci A, J. Electrochem. Soc., 162(1), A44 (2015)
  11. Chodankar NR, Ji SH, Kim DH, J. Electrochem. Soc., 165(11), A2446 (2018)
  12. Ghosh S, Sahoo G, Polaki SR, Krishna NG, Kamruddin M, Mathews T, J. Appl. Phys., 122, 214902 (2017)
  13. Mao X, Hatton TA, Rutledge GC, Curr. Org. Chem., 17, 1390 (2013)
  14. Choudhury A, Dey B, Mahapatra SS, Kim DW, Yang KS, Yang DJ, Nanotechnology, 29, 165401 (2018)
  15. Islam N, Hoque MNF, Zu Y, Wang S, Fan Z, MRS Adv., 3, 855 (2018)
  16. Kim C, Yang KS, Lee WJ, Electrochem. Solid State Lett., 7(11), A397 (2004)
  17. Samuel E, Joshi B, Jo HS, Kim YI, An S, Swihart MT, Yun JM, Kim KH, Yoon SS, Chem. Eng. J., 328, 776 (2017)
  18. Kim CH, Kim BH, J. Power Sources, 274, 512 (2015)
  19. Cakici M, Reddy KR, Alonso-Marroquin F, Chem. Eng. J., 309, 151 (2017)
  20. Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993 (2017)
  21. Inagaki M, Yang Y, Kang FY, Adv. Mater., 24(19), 2547 (2012)
  22. Kim C, Yang K, Appl. Phys. Lett., 83, 1216 (2003)
  23. Zhou DD, Li WY, Dong XL, Wang YG, Wang CX, Xia YY, J. Mater. Chem. A, 1, 8488 (2013)
  24. Park SJ, Im SH, Bull. Korean Chem. Soc., 29, 777 (2008)
  25. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E, ACS Appl. Mater. Interfaces, 7, 23515 (2015)
  26. Wang J, Tang J, Xu Y, Ding B, Chang Z, Wang Y, Hao X, Dou H, Kim JH, Zhang X, Yamauchi Y, Nano Energy, 28, 232 (2016)
  27. Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE, Carbon, 99, 607 (2016)
  28. Jeong JH, Kim BH, J. Taiwan Inst. Chem. Eng., 84, 179 (2018)
  29. Kim YS, Kumar K, Fisher FT, Yang EH, Nanotechnology, 23, 015301 (2012)
  30. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C, Carbon, 107, 629 (2016)
  31. Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M, Nano-Struct. Nano-Objects, 10, 42 (2017)
  32. Ismar E, Karazehir T, Ates M, Sarac AS, J. Appl. Polym. Sci., 135, 45723 (2018)
  33. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294 (2010)
  34. Ding R, Wu H, Thunga M, Bowler N, Kessler MR, Carbon, 100, 126 (2016)
  35. Ghosh S, Ganesan K, Polaki SR, Mathews T, Dhara S, Kamruddin M, Tyagi AK, Appl. Surf. Sci., 349, 576 (2015)
  36. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, Ostrikov K, Energy Storage Mater., 14, 297 (2018)
  37. Ghosh S, Polaki SR, Kamruddin M, Jeong SM, Ostrikov KK, J. Phys. D-Appl. Phys., 51, 145303 (2018)
  38. Kim BH, Yang KS, J. Ind. Eng. Chem., 20(5), 3474 (2014)
  39. Chee WK, Lim HN, Zainal Z, Harrison I, Andou Y, Huang NM, Altarawneh M, Jiang ZT, Mater. Lett., 199, 200 (2017)
  40. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J, Nano Energy, 15, 66 (2015)
  41. Dong Q, Wang G, Hu H, Yang J, Qian BQ, Ling Z, Qiu JS, J. Power Sources, 243, 350 (2013)
  42. Hong S, Lee S, Paik U, Electrochim. Acta, 141, 39 (2014)
  43. Eftekhari A, J. Mater. Chem. A, 6, 2866 (2018)
  44. Cai J, Niu HT, Wang HX, Shao H, Fang J, He JR, Xiong HG, Ma CJ, Lin T, J. Power Sources, 324, 302 (2016)
  45. Sankar KV, Selvan RK, RSC Adv., 4, 17555 (2014)