Korean Journal of Chemical Engineering, Vol.36, No.2, 305-311, February, 2019
Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells
E-mail:
The effects of GaAs substrate off-orientation on GaInP/AlGaInP heterojunction solar cells were investigated. The performances of solar cells fabricated on 2° and 10° off GaAs substrates were compared. The short circuit current densities were 10.44 mA/cm2 for the 10° off sample, 7.15 mA/cm2 and 7.41 mA/cm2 for the 2° off samples, which showed 30% higher short-circuit current density for 10o off samples. Also, 30% higher external quantum efficiencies and smooth surface morphology were observed in the solar cell fabricated on the 10° off GaAs substrate. Secondary ion mass spectrometry depth profiles showed that the solar cells on 2° off substrates had a 20-times higher oxygen concentration than the solar cells on 10o off GaAs substrate in the n-GaAs/GaAs buffer layer. The 30% reduction for the solar cells on 2° substrates in short circuit current density (Jsc) was attributed to the higher oxygen concentration of the 2° off samples than the 10° off samples. I-V characteristics comparison between different front contact grid patterns was also performed for optimization of grid contacts. A 0.47 V bandgap-voltage offset, one of the device performance figures of merit to compare PV cells with different materials, was obtained.
- Suzuki M, Nishikawa Y, Ishikawa M, Kokubun Y, J. Cryst. Growth, 113, 127 (1991)
- Kondo M, Anayama C, Okada N, Sekiguchi H, Domen K, Tanahashi T, J. Appl. Phys., 76, 914 (1994)
- Radulescu DC, Wicks GW, Schaff WJ, Calawa AR, Eastman LF, J. Appl. Phys., 63, 5115 (1988)
- Suzuki T, Gomyo A, Iijima S, J. Cryst. Growth, 99, 60 (1990)
- France RM, Geisz JF, Garcia I, Steiner MA, McMahon WE, et al., IEEE J. Photovoltaics, 5, 432 (2015)
- Sah CT, Noyce RN, Shockley W, Proceedings of the IRE, 45, 1228 (1957)
- Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, et al., IEEE J. Photovoltaics, 4, 1433 (2014)
- Zhang B, Lee DH, Chae H, Park C, Cho SM, Korean J. Chem. Eng., 27(3), 999 (2010)
- Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095 (2014)
- Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32, 261 (2014)
- Yoo IH, Kalanur SS, Eom K, Ahn B, Cho IS, Yu HK, Jeon HT, Seo HT, Korean J. Chem. Eng., 34(12), 3200 (2017)
- Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678 (2016)
- Feucht DL, J. Vac. Sci. Technol., 14, 57 (1977)
- Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ, Appl. Phys. Lett., 103, 041118 (2013)
- Masuda T, Tomasulo S, Lang JR, Lee ML, J. Appl. Phys., 117, 094504 (2015)
- Moser M, Geng C, Lach E, Queisser I, Scholz F, Schweizer H, Dornen A, J. Cryst. Growth, 124, 333 (1992)
- Chand N, Jordan AS, Chu SNG, Appl. Phys. Lett., 59, 3270 (1991)
- Kondo M, Okada N, Domen K, Sugiura K, Anayama C, Tanahashi T, J. Electron. Mater., 23, 355 (1994)
- Xiang N, Tukiainen A, Pessa M, J. Electron. Mater., 13, 549 (2002)
- Yu HW, Chang EY, Nguyen HQ, Chang JT, Chung CC, Kuo CI, Wong YY, Wang WC, Appl. Phys. Lett., 97, 2008 (2010)
- Hata M, Takata H, Yako T, Fukuhara N, Maeda T, Uemura Y, J. Cryst. Growth, 124, 427 (1992)
- Philips BA, Norman AG, Seong TY, Mahajan S, Booker GR, Skowronski M, Harbison JP, Keramidas VG, J. Cryst. Growth, 140, 249 (1994)
- Gomyo A, Suzuki T, Iijima S, Phys. Rev. Lett., 60, 2645 (1988)
- Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 34(5), 1504 (2017)