화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 396-406, July, 2021
Hydrophobic modification of silica/exfoliated graphite nanoplatelets aerogel and its application as supporting material for form-stable phase change materials
E-mail:
Hydrophobic modified silica/exfoliated graphite nanoplatelets aerogel (M-SiO2/xGnP) were successfully prepared via surface modification of silica/xGnP alcogel and followed by ambient pressure drying. Afterwards, form-stable PCMs in which capric.palmitic acids eutectic (CA-PA) was confined in the prepared aerogels were obtained by vacuum infiltration. Characterization of the prepared form-stable PCMs revealed that both the hydrophobic modification and the doping of xGnP could effectively improve the loading of CA-PA in the aerogel. The unmodified silica aerogel could not adsorb CA-PA, while the loading of CA-PA in the surface modified pure silica aerogel supported form-stable PCM and the unmodified silica/xGnP aerogel supported form-stable PCM were 24.2 wt% and 44.4 wt%, respectively. Besides, the hydrophobic modification and the doping of xGnP showed significant synergistic effect. The loading of CA-PA in the M-SiO2/xGnP supported form-stable PCM (FPCM/xGnP-20-48) could attain 78.9 wt% when the M-SiO2/xGnP was obtained by modifying the alcogel with 20 vol% trimethyl chlorosilane for 48 h. The FPCM/xGnP-20-48 not only had high latent heat and good thermal reliability, but also exhibited significantly improved thermal conductivity and alleviated supercooling due to the effective thermal conductive network formed by xGnP and the promoted heterogeneous nucleation of CA-PA at interfaces with aerogel.
  1. Marani A, Nehdi ML, Constr. Build. Mater., 217, 36 (2019)
  2. Chang SJ, Wi SH, Cho HM, Jeong SG, Kim SM, J. Ind. Eng. Chem., 82, 413 (2020)
  3. Kahwaji S, White MA, Thermochim. Acta, 660, 94 (2018)
  4. Ben Romdhane S, Amamou A, Ben Khalifa R, Said NM, Younsi Z, Jemni A, J. Build. Eng., 32, 101563 (2020)
  5. Dong T, Jiang W, Liu Y, Wu Y, Qi Y, Li J, Ma Y, Ben H, Han G, Ind. Crop. Prod., 158, 112945 (2020)
  6. Mathis D, Blanchet P, Landry V, Lagiere P, Green Energy Environ, 4, 56 (2019)
  7. Fei H, Du W, He Q, Gu Q, Wang L, ACS Omega, 5, 27522 (2020)
  8. Shin JM, Lee JH, Joo SW, Son NG, Kang MS, J. Ind. Eng. Chem., 97, 267 (2021)
  9. Lee JK, Wi SH, Yun BY, Chang SJ, Kim SM, J. Ind. Eng. Chem., 70, 281 (2019)
  10. Jeon JS, Park JH, Wi SH, Kim KH, Kim SM, J. Ind. Eng. Chem., 79, 437 (2019)
  11. Wang C, Cai Z, Wang T, Chen K, Mater. Chem. Phys., 250, 123041 (2020)
  12. Ola O, Chen Y, Niu Q, Xia Y, Mallick T, Zhu Y, J. Mater. Sci. Technol., 36, 70 (2020)
  13. Zhang X, Wang X, Zhong C, Liu Q, J. Ind. Eng. Chem., 85, 208 (2020)
  14. Sun KY, Kou Y, Zheng H, Liu X, Tan ZC, Shi Q, Sol. Energy Mater. Sol. Cells, 178, 139 (2018)
  15. Li BM, Shu D, Wang RF, Zhai LL, Chai YY, Lan YJ, Cao HW, Zou C, Renew. Energy, 145, 84 (2020)
  16. He F, Wang XD, Wu DZ, Renew. Energy, 74, 689 (2015)
  17. Wan X, Chen C, Tian S, Guo B, J. Energy Storage, 28, 101276 (2020)
  18. Nomura T, Zhu CY, Sheng N, Tabuchi K, Sagara A, Akiyama T, Sol. Energy Mater. Sol. Cells, 143, 424 (2015)
  19. Matei C, Buhalteanu L, Berger D, Mitran RA, Int. J. Heat Mass Transfer, 144, 118699 (2019)
  20. Tan N, Xie T, Hu P, Feng Y, Li Q, Zhao S, Zhou HN, Zeng WB, Zeng JL, J. Energy Storage, 34, 102016 (2021)
  21. Sari A, Bicer A, Al-Ahmed A, Al-Sulaiman FA, Zahir MH, Mohamed SA, Sol. Energy Mater. Sol. Cells, 179, 353 (2018)
  22. Tang F, Su D, Tang YJ, Fang GY, Sol. Energy Mater. Sol. Cells, 141, 218 (2015)
  23. Wen RL, Zhang XG, Huang ZH, Fang MH, Liu YG, Wu XW, Min X, Gao W, Huang SF, Sol. Energy Mater. Sol. Cells, 178, 273 (2018)
  24. Yu YX, Xu J, Wang GC, Zhang RQ, Peng XM, J. Mater. Sci., 55(4), 1511 (2020)
  25. Ding J, Wu X, Shen X, Cui S, Chen X, Energy, 210, 118478 (2020)
  26. Lamy-Mendes A, Girao AV, Silva RF, Duraes L, Microporous Mesoporous Mater., 288, 109575 (2019)
  27. He S, Chen X, J. Non-Cryst. Solids, 463, 6 (2017)
  28. Guo Y, Wang H, Zeng L, J. Non-Cryst. Solids, 428, 1 (2015)
  29. Ma LY, Wang QW, Li LP, Sol. Energy Mater. Sol. Cells, 194, 215 (2019)
  30. Duquesne M, Mailhe C, Ruiz-Onofre K, Achchaq F, Energy, 188, 116067 (2019)
  31. Atinafu DG, Dong WJ, Huang XB, Gao HY, Wang G, Appl. Energy, 211, 1203 (2018)
  32. Huang X, Liu Z, Xia W, Zou R, Han RPS, J. Mater. Chem. A, 3, 1935 (2015)
  33. Gao H, Bo L, Liu P, Chen D, Li A, Ou Y, Dong C, Wang J, Chen X, Hou C, Dong W, Wang G, Sol. Energy Mater. Sol. Cells, 201, 110122 (2019)
  34. Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J, Zhu L, Xiao ZL, Zhu XY, Zhu Z, Sun LX, Cao Z, Appl. Energy, 115, 603 (2014)
  35. Wang LP, Sui J, Zhai M, Tian F, Lan XZ, J. Phys. Chem. C, 119, 18697 (2015)
  36. Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L, ACS Nano, 9, 11699 (2015)
  37. Li M, Wu ZS, Kao HT, Appl. Energy, 88(9), 3125 (2011)
  38. Zang X, Cai YB, Sun GY, Zhao Y, Huang FL, Song L, Hu Y, Fong H, Wei QF, Sol. Energy Mater. Sol. Cells, 132, 183 (2015)
  39. Doguscu DK, Altmtas A, Sari A, Alkan C, Energy Build., 150, 376 (2017)
  40. Zhang JW, Guan XM, Song XX, Hou HH, Yang ZP, Zhu JP, Energy Build., 92, 155 (2015)
  41. Bao S, Wei Q, Cao J, Li, Ma L, An J, Lin CT, Luo J, Zhou K, Compos. Interfaces, 1 (2020).