Journal of Industrial and Engineering Chemistry, Vol.101, 262-269, September, 2021
Synthesis of sub-50 nm bio-inspired silica particles using a C-terminalmodified ferritin template with a silica-forming peptide
E-mail:
Silica-forming peptides (SFPs) and the SFP-modified structural proteins can be used as templates for the synthesis of biosilica nanoparticles (NPs). However, such biomolecule-mediated synthesis showed limitations for the generation of NPs with sizes sub-50 nm. In this study, the SFP sequences (KPSHHHHHTGAN and KPTHHHHHHDG for Kps and Kpt, respectively) were fused to the C-terminus of the human ferritin heavy chain (Fn), resulting in the SFP moieties in the inner space of Fn (termed FncKps and Fn-cKpt). Using Fn-cSFP templates for silicification in two-phase system, the Fn-cKps@SiO2 and Fn-cKpt@SiO2 NPs were generated in mean diameters of 26 and 28 nm, respectively. Also, we employed biosilica NPs sub-50 nm for a doxorubicin (Dox) delivery system (application model). FncKpt@ SiO2 NPs exhibited a high loading efficiency compared to Fn-cKpt only (1.7-fold) and prolonged release patterns with Dox. Most importantly, the uptake of Fn-cKpt@SiO2 into cancer cells was increased so that the efficient delivery of Dox to the cell inside was observed. The uniform generation of biosilica NPs sub-50 nm obtained here is a new achievement. Together with the ideal pH-dependent drug release, the size-controlled design of biosilica will be a useful strategy for efficient delivery of chemical drugs to target cells.
- Davidson S, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV, A.C.S. Biomater, Sci. Eng., 2, 1493 (2016)
- Slowing II, Trewyn BG, Lin VSY, J. Am. Chem. Soc., 129(28), 8845 (2007)
- Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY, Adv. Drug Deliv. Rev., 60, 1278 (2008)
- Trewyn BG, Giri S, Slowing II, Lin VSY, Chem. Commun., 3236 (2007).
- Chang JS, Chang KLB, Hwang DF, Kong ZL, Environ. Sci. Technol., 41, 2064 (2007)
- Wani MY, Hashim MA, Nabi F, Malik MA, Adv. Phys. Chem., 2011, 115 (2011)
- Hyde Emily D. E. R., Seyfaee Ahmad, Neville Frances, Moreno-Atanasio Roberto, Ind. Eng. Chem. Res., 55(33), 8891 (2016)
- Auger A, Samuel J, Poncelet O, Raccurt O, Nanoscale Res. Lett., 6, 328 (2011)
- Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
- Grun M, Lauer I, Unger KK, Adv. Mater., 9(3), 254 (1997)
- Unger KK, Kumar D, Grun M, Buchel G, Ludtke S, Adam T, Schumacher K, Renker S, J. Chromatogr. A, 892, 47 (2000)
- Prouzet E, Cot F, Nabias G, Larbot A, Kooyman P, Pinnavaia TJ, Chem. Mater., 11, 1498 (1999)
- Wang J, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl Mater. Interfaces, 3, 1538 (2011)
- Lu F, Wu SH, Huang Y, Mou CY, Small, 5, 1408 (2009)
- Susnik E, Taladriz-Blanco P, Drasler B, Balog S, Petri-Fink A, Rothen-Rutishauser B, Cells, 9 (2020)
- Pan LM, He QJ, Liu JN, Chen Y, Ma M, Zhang LL, Shi JL, J. Am. Chem. Soc., 134(13), 5722 (2012)
- Patwardhan SV, Matthey J, Technol. Rev., 63, 152 (2019)
- Lei Q, Guo J, Kong F, Cao J, Wang L, Zhu W, Brinker CJ, J. Am. Chem. Soc., 143, 6305 (2021)
- Suzuki K, Sato S, Fujita M, Nat. Chem., 2, 25 (2010)
- Wu C, Yu C, Chu M, Int. J. Nanomedicine, 6, 807 (2011)
- Balakrishnan V, Ab Wab HA, Abdul Razak K, Shamsuddin S, J. Nanomater., 2013, 8 (2013)
- Ki MR, Kim JK, Kim SH, Nguyen TKM, Kim KH, Pack SP, J. Ind. Eng. Chem., 81, 367 (2020)
- Ki MR, Nguyen TKM, Jun HS, Pack SP, Process Biochem., 68, 182 (2018)
- Nguyen TKM, Kim MR, Lee CS, Pack SP, J. Ind. Eng. Chem., 73, 198 (2019)
- Nguyen TKM, Ki MR, Son RG, Kim KH, Hong J, Pack SP, Biochem. Eng. J., 163 (2020)
- Arosio P, Levi S, Free Radic. Biol. Med., 33, 457 (2002)
- Harrison PM, Arosio P, Biochim. Biophys. Acta, 1275, 161 (1999)
- Jappelli R, Cesareni G, Febs Lett., 394, 311 (1996)
- Jappelli R, Luzzago A, Tataseo P, Pernice I, Cesareni G, J. Mol. Biol., 227, 532 (1992)
- Levi S, Luzzago A, Franceschinelli F, Santambrogio P, Cesareni G, Arosio P, Biochem. J., 264, 381 (1989)
- Levi S, et al., J. Biol. Chem. 263 1988 18086 18092.
- Zhang Y, Orner BP, Int. J. Mol. Sci., 12(8), 5406 (2011)
- Nguyen TKM, Ki MR, Son RG, Pack SP, Appl. Microbiol. Biotechnol., 103(5), 2205 (2019)
- Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J, ACS Nano, 7, 4830 (2013)
- Kroger N, Deutzmann M, Sumper RF, Sumper M, Science, 286, 1129 (1999)
- Strickland JDH, Parsons TR, Fisher. Res. Board Canada (1972).
- Wieneke R, Bernecker A, Riedel R, Sumper M, Steinem C, Geyer A, Org. Biomol. Chem., 9, 5482 (2011)
- Schmitt J, et al., Mol. Biol. Rep. 18 1993 223 230.
- Arndt C, et al., Methods Mol. Biol. 869 2012 49 53.
- Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J, Cell, 121, 703 (2005)
- Belton DJ, Deschaume O, Perry CC, FEBS J., 29, 1710 (2012)
- Hristov DR, Mahon E, Dawson KA, Chem. Commun., 51, 17420 (2015)
- Yeo KB, Kim MR, Park KS, Pack SP, Process Biochem., 58, 193 (2017)
- Schlossmacher U, et al., FEBS J., 278, 114 (2011)
- Stetefeld J, McKenna SA, Patel TR, Biophys. Rev., 8, 409 (2016)
- Matthias T, Katsumi K, Alexander VN, James PO, Francisco RR, Jean R, Kenneth SWS, Pure Appl. Chem., 87, 1051 (2015)
- Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X, PNAS USA, 111, 14900 (2014)
- Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M, Biomacromolecules, 12(5), 1629 (2011)
- Gallois L, Fiallo M, Garnier-Suillerot A, Biochim. Biophys. Acta Biomembr., 1370, 31 (1998)
- Righetti PG, Menozzi M, Gianazza E, Valentini L, Febs Lett., 101, 51 (1979)
- Mendez A, Bosch E, Roses M, Neue UD, J. Chromatogr. A, 986, 33 (2003)
- Moghimi SM, Hunter AC, Murray JC, Pharmacol. Rev., 53, 283 (2001)
- Carroll SA, Walther JV, Am. J. Sci., 290, 797 (1990)
- Lee RJ, Low PS, Biochim Biophys Acta, 1223, 134 (1995)
- Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM, Biomaterials, 28, 2959 (2007)
- Xing X, et al., J. Nanosci. Nanotechnol., 5, 1688 (2005)
- Chono S, Tanino T, Seki T, Morimoto K, J. Pharm. Pharmacol., 59, 75 (2007)
- Jiang W, Kim BYS, Rutka JT, Chan WCW, Nat. Nanotechnol., 3(3), 145 (2008)
- Yuan Y, Liu C, Qian J, Wang J, Zhang Y, Biomaterials, 31, 730 (2010)