화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.9, 519-524, September, 2021
알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성
Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels
E-mail:
The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 °C. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 °Cand -196 °C exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.
  1. Mallick P, Tewary NK, Ghosh SK, Chattopadhyay PP, Mater. Charact., 133, 77 (2017)
  2. Kim J, Choi S, Park D, Lee J, Mater. Des., 65, 914 (2015)
  3. Marquardt ED, Le JP, Radebaugh R, p. 681, Cryocoolers 11, Kluwer Academic Publishers, Boston (2002).
  4. Marschall CW, Hehemann RF, Troiano AR, Trans. ASM, 55, 135 (1962)
  5. Choi M, Lee J, Nam H, Kang N, Kim N, Cho D, Met. Mater. Int., 26, 240 (2020)
  6. Tomota Y, Strum M, Morris JW, Metall. Trans. A, 18, 1073 (1991)
  7. Lee J, Sohn SS, Hong S, Suh BC, Kim SK, Lee BJ, Kim NJ, Lee S, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 45, 5419 (2014)
  8. Sohn SS, Hong S, Lee J, Suh BC, Kim SK, Lee BJ, Kim NJ, Lee S, Acta Mater., 100, 39 (2015)
  9. Kim JS, Jeon JB, Jung JE, Um KK, Chang YW, Met. Mater. Int., 20, 41 (2014)
  10. Kim D, Jang GH, Lee T, Lee CS, Met. Mater. Int., 26, 1741 (2020)
  11. Lee SI, Lee SY, Han J, Hwang B, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 742, 334 (2019)
  12. Allain S, Chateau JS, Bouaziz O, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 387, 143 (2004)
  13. Remy L, Pineau A, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 28, 99 (1977)
  14. Lee YK, Choi C, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 31, 355 (2000)
  15. Olson GB, Cohen M, Metall. Trans. A, 7, 1897 (1976)
  16. Curtze S, Kuokkala VT, Oikari A, Talonen J, Hanninen H, Acta Mater., 59, 1068 (2011)
  17. Lee SY, Lee SI, Hwang B, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 711, 22 (2018)
  18. Kwon Y, Hwang JH, Choi HC, Trang TTT, Kim B, Zargaran A, Kim NJ, Met. Mater. Int., 26, 75 (2020)
  19. Gutierrez-Urrutia I, Raabe D, Acta Mater., 60, 5791 (2012)
  20. Sohn SS, Lee BJ, Lee S, Kim NJ, Kwak JH, Acta Mater., 61, 5050 (2013)
  21. Kim H, Suh DW, Kim NJ, Sci. Technol. Adv. Mater., 14, 1 (2013)
  22. Kim SH, Kim H, Kim NJ, Nature, 518(7537), 77 (2015)
  23. Fu B, Pei C, Guo Y, Fu L, Shan A, Mater. Sci. Technol., 36, 827 (2020)
  24. Fu L, Fan L, Li Z, Sun N, Wang H, Wang W, Shan A, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 582, 126 (2013)
  25. Fu L, Shan M, Zhang D, Wang H, Wang W, Shan A, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 48, 2179 (2017)
  26. Dieter GE, Mechanical Metallurgy, 3rd ed., p.333, McGraw-Hill book Co., New York (1986).