화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.9, 525-531, September, 2021
탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응
Carbon-Encapsulated Ni Catalysts for CO2 Methanation
E-mail:,
Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5% CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 °C and 70% at 400 °C, which are 73 and 75% of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.
  1. Park NB, J. Energy & Climate Change, 16, 51 (2021).
  2. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
  3. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A, Green Chem., 17, 2647 (2015)
  4. Yeom G, Seo M, Baek Y, Trans. Korean Hydrogen New Energy Soc., 30, 14 (2019)
  5. Lin JH, Ma CP, Wang Q, Xu YF, Ma GY, Wang J, Wang HT, Dong CL, Zhang CH, Ding MY, Appl. Catal. B: Environ., 243, 262 (2019)
  6. Jia XY, Zhang XS, Rui N, Hu X, Liu CJ, Appl. Catal. B: Environ., 244, 159 (2019)
  7. Ren J, Qin X, Yang JZ, Qin ZF, Guo HL, Lin JY, Li Z, Fuel Process. Technol., 137, 204 (2015)
  8. Mebrahtu C, Abate S, Perathoner S, Chen SM, Centi G, Catal. Today, 304, 181 (2018)
  9. Takano H, Shinomiya H, Izumiya K, Kumagai N, Habazaki H, Hashimoto K, Int. J. Hydrog. Energy, 40(26), 8347 (2015)
  10. Wang C, Zhai P, Zhang ZC, Zhou Y, Zhang JK, Zhang H, Shi ZJ, Han RPS, Huang FQ, Ma D, J. Catal., 334, 42 (2016)
  11. Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X, Angew. Chem.-Int. Edit., 52, 371 (2013)
  12. Deng J, Ren P, Deng D, Yu L, Yang F, Bao X, Energ. Environ. Sci., 7, 1919 (2014)
  13. Romero-Saez M, Dongil AB, Benito N, Espinoza-Gonzalez R, Escalona N, Gracia F, Appl. Catal. B: Environ., 237, 817 (2018)
  14. Feng Y, Yang W, Chen S, Chu W, Integrated Ferroelectrics, 151, 116 (2014)
  15. Wang W, Duong-Viet C, Ba H, Baaziz W, Tuci G, et al., ACS Appl. Energy Mater., 2, 1111 (2019)
  16. Feng Y, Yang W, Chu W, Int. J. Chem. Eng., 2015, 795386 (2015)
  17. Lee GH, Park JH, Rhee CK, Kim WW, J. Ind. Eng. Chem., 9(1), 71 (2003)
  18. Uhm YR, Park JH, Kim WW, Cho CH, Rhee CK, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 106, 224 (2004)
  19. Kim CK, Lee GJ, Lee MK, Rhee CK, Powder Technol., 263, 1 (2014)
  20. Beketov IV, et al., Nanosystems: Phys. Chem. Mathematics, 9, 513 (2018).
  21. Wang N, Shen K, Huang L, Yu X, Qian W, Chu W, ACS Catal., 3, 1638 (2013)
  22. Seo JC, Kim H, Lee YL, Nam S, Roh HS, Lee K, Park SB, ACS Sustainable Chem. Eng., 9, 894 (2021)
  23. Goodman DJ, Thesis MS, p.21-26, UCLA, Los Angeles (2013).
  24. Li XH, Antonietti M, Chem. Soc. Rev., 42, 6593 (2013)
  25. Frontera P, Macario A, Ferraro M, Antonucci P, Catalysts, 7, 59 (2017)