화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 231-257, December, 2021
Holistic review on the recent development in mathematical modelling and process simulation of hollow fiber membrane contactor for gas separation process
E-mail:
Hollow fiber membrane contactor (HFMC) has been widely studied for gas separation process due to its process intensification capability of combining conventional contactors with membrane technology. In the area of modeling and simulation of HFMC, the development of mathematical model for non-ideal conditions, that is incorporated into process design is key to accurately reflect actual industrial gas separation process. This article aims to review the modelling and simulation techniques, the capabilities and the limitations of different mathematical models in predicting gas separation performance in HFMC for both laboratory analysis and industrial applications. The approach of incorporating the HFMC models into gas separation system and the current progress of process simulation works to develop industrial scale gas separation process will be highlighted. Future works and challenges towards developing comprehensive model in HFMC for industrial gas separation process would also be presented to portray the potential of modelling and simulation in designing and optimizing the HFMC system.
  1. Tahvildari K, Razavi SMR, Tavakoli H, Mashayekhi A, Golmohammadzadeh R, Arab. J. Chem, 9, 72 (2016)
  2. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S, Chem. Eng. Process., 108, 27 (2016)
  3. Klaassen R, Feron PHM, Jansen AE, Chem. Eng. Res. Des., 83(A3), 234 (2005)
  4. Mendez DLM, Lemaitre C, Castel C, Ferrari M, Simonaire H, Favre E, J. Membr. Sci., 530, 20 (2017)
  5. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 380(1-2), 21 (2011)
  6. Hoff KA, Svendsen HF, Chem. Eng. Sci., 116, 331 (2014)
  7. Ghasem N, Processes, 4 (2019)
  8. Bazhenov SD, Bildyukevich V, Volkov AV, Fibers, 6 (2018)
  9. Mandowara A, Bhattacharya PK, J. Environ. Manage., 92, 121 (2011)
  10. Kieffer R, Charcosset C, Puel F, Mangin D, Comput. Chem. Eng., 32(6), 1325 (2008)
  11. Dabiri E, Noori M, Zahmatkesh S, J. Water Process Eng., 30 (2019)
  12. Noriega-Hevia G, Serralta J, Borras L, Seco A, Ferrer J, J. Environ. Chem. Eng., 8 (2020)
  13. Hao PJ, Wijmans JG, Kniep J, Baker RW, J. Membr. Sci., 462, 131 (2014)
  14. Pahlavanzadeh H, Darabi M, Ghaleh VR, Bakhtiari O, Ind. Eng. Chem. Res., 59(41), 18629 (2020)
  15. Scholes CA, Int. J. Greenh. Gas Control., 87, 203 (2019)
  16. Villeneuve K, Zaidiza DA, Roizard D, Rode S, Chem. Eng. Sci., 190, 345 (2018)
  17. Usman M, Dai ZD, Hillestad M, Deng LY, Chem. Eng. Res. Des., 123, 377 (2017)
  18. Luis P, Garea A, Irabien A, Sep. Purif. Technol., 72(2), 174 (2010)
  19. Kumoro AC, Ariono D, Siagian UWR, et al., MATEC Web of Conferences, 156 (2018).
  20. Kim S, Scholes CA, Heath DC, Kentish SE, Chem. Eng. J., 411 (2021)
  21. Zhao SF, Feron PM, Deng LY, Favre E, Chabanon E, Yan SP, Hou JW, Chen V, Qi H, J. Membr. Sci., 511, 180 (2016)
  22. Zhang Y, Wang R, Curr. Opin. Chem. Eng., 2, 255 (2013)
  23. Mansourizadeh A, Ismail AF, J. Hazard. Mater., 741, 38 (2009)
  24. Cui Z, deMontigny D, Carbon Manag, 4, 69 (2013)
  25. Stanojevic M, Lazarevic B, Radic D, FME Trans., 31, 91 (2003)
  26. Abdolahi-Mansoorkhani H, Seddighi S, Fuel Process. Technol., 209 (2020)
  27. Gilassi S, Rahmanian N, Int. J. Chem. React. Eng., 14, 53 (2016)
  28. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A, Chem. Eng. J., 168(3), 1217 (2011)
  29. Ze Z, Sx JJGNJ, review and perspective, 16, 355 (2014).
  30. Rivero R, Panagakos G, Lieber A, Hornbostel K, Membranes, 10 (2020)
  31. Darabi M, Pahlavanzadeh H, Chem. Eng. Process., 147 (2020)
  32. Bahlake A, Farivar F, Dabir B, Heat Mass Transf., 52, 1295 (2015)
  33. He K, Zhang LZ, Int. J. Heat Mass Transf., 35, 186 (2019)
  34. Lu Y, Yan J, Yu X, Dahlquist E, MATHMOD 2009, Austria, February 11-13, 2009, 2009.
  35. Giorno L, Drioli E, Strathmann H, The Principle of Membrane Contactors, in: Encyclopedia of Membranes, pp.1, 2015.
  36. Farjami M, Moghadassi A, Vatanpour V, Chem. Eng. Process., 98, 41 (2015)
  37. Li L, Ma G, Pan Z, Zhang N, Zhang Z, Membranes, 10 (2020)
  38. Chabanon E, Roizard D, Favre E, Chem. Eng. Sci., 87, 393 (2013)
  39. Qi Z, Cussler EL, J. Membr. Sci., 23, 333 (1985)
  40. Ibrahim MH, El-Naas MH, Zhang ZE, Van der Bruggen B, Energy Fuels, 32(2), 963 (2018)
  41. Qi Z, Cussler EL, J. Membr. Sci., 23, 321 (1985)
  42. Tichacek LJ, Barkelew CH, Baron T, Axial mixing in pipes, 3, 439 (1957).
  43. Ghaemi A, Shahhosseini S, Maragheh MG, Chem. Eng. J., 149(1-3), 110 (2009)
  44. Zaidiza DA, Belaissaoui B, Rode S, Favre E, Sep. Purif. Technol., 188, 38 (2017)
  45. Dai Z, Deng L, Int. J. Greenh. Gas Control., 54, 59 (2016)
  46. Yu HS, The J, Tan ZC, Feng XS, Chem. Eng. Sci., 156, 136 (2016)
  47. Rode S, Nguyen PT, Roizard D, Bounaceur R, Castel C, Favre E, J. Membr. Sci., 389, 1 (2012)
  48. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R, J. Membr. Sci., 347(1-2), 228 (2010)
  49. Luis P, Garea A, Irabien A, J. Membr. Sci., 330(1-2), 80 (2009)
  50. Atchariyawut S, Jiraratananon R, Wang R, Sep. Purif. Technol., 63(1), 15 (2008)
  51. Dindore VY, Versteeg GF, Int. J. Heat Mass Transf., 48(16), 3352 (2005)
  52. Lu JG, Wang LJ, Sun XY, Li JS, Liu XD, Ind. Eng. Chem. Res., 44(24), 9230 (2005)
  53. Rosli A, Shoparwe NF, Ahmad AL, Low SC, Lim JK, Sep. Purif. Technol., 219, 230 (2019)
  54. Saidi M, Heidarinejad S, Rahimpour HR, Talaghat MR, Rahimpour MR, J. Nat. Gas Sci. Eng., 18, 274 (2014)
  55. Al-Marzouqi MH, El-Naas MH, Marzouk SAM, Al-Zarooni MA, Abdullatif N, Faiz R, Sep. Purif. Technol., 59(3), 286 (2008)
  56. Zaidiza DRA, Modelling of Hollow Fibre Membrane Contactors: Application to Post-combustion Carbon Dioxide Capture, in, 2016.
  57. Boucif N, Nguyen PT, Roizard D, Favre E, Desalination Water Treat., 14, 146 (2012)
  58. Gebremariam S, Jonassen O, Pinto D, Modelling a Membrane Contactor for CO2 Capture, in, 2017.
  59. Chen V, Hlavacek MJAJ, Application of Voronoi tessellation for modeling randomly packed hollow-fiber bundles, 40, 606 (1994).
  60. Wang R, Li DF, Liang DT, Chem. Eng. Process., 43(7), 849 (2004)
  61. Bird RB, Stewart WE, Lightfoot EN, Transport phenomena, John Wiley & Sons, 2006.
  62. Happel J, Viscous flow relative to arrays of cylinders, 5, 174 (1959).
  63. Quek VC, Shah N, Chachuat B, Chem. Eng. Res. Des., 132, 1005 (2018)
  64. Gunther J, Schmitz P, Albasi C, Lafforgue C, J. Membr. Sci., 348(1-2), 277 (2010)
  65. Goyal N, Suman S, Gupta SK, J. Membr. Sci., 474, 64 (2015)
  66. Cai JJ, Hawboldt K, Abdi MA, J. Membr. Sci., 520, 415 (2016)
  67. Eslami S, Mousavi SM, Danesh S, Banazadeh H, Adv. Eng. Softw., 42, 612 (2011)
  68. Rezakazemi M, Darabi M, Soroush E, Mesbah M, Sep. Purif. Technol., 210, 920 (2019)
  69. Zhang HY, Wang R, Liang DT, Tay JH, J. Membr. Sci., 279(1-2), 301 (2006)
  70. Pantoleontos G, Kaldis SP, Koutsonikolas D, Skodras G, Sakellaropoulos GP, Chem. Eng. Commun., 197(5), 709 (2010)
  71. Dai Z, Usman M, Hillestad M, Deng L, GREEN ENERGY ENVIRON, 1, 266 (2016)
  72. Tantikhajorngosol P, Laosiripojana N, Jiraratananon R, Assabumrungrat S, Int. J. Heat Mass Transf., 128, 1136 (2019)
  73. Azari A, Abbasi MA, Sanaeepur H, Int. J. Greenh. Gas Control., 49, 81 (2016)
  74. Mehdipour M, Karami MR, Keshavarz P, Ayatollahi S, Energy Fuels, 27(4), 2185 (2013)
  75. Faiz R, Al-Marzouqi M, J. Membr. Sci., 365(1-2), 232 (2010)
  76. Coulson JM, Richardson JF, Butterworth-Heinemann, pp.529, 2018.
  77. Barati S, Motahari K, Miri T, Mathematical Modelling and Simulation of Carbon Dioxide Absorption from N2 Using Hollow Fiber Membrane Contactor, 2016.
  78. Kong XL, Gong DW, Ke W, Qiu MH, Fu KY, Xu P, Chen XF, Fan YQ, Ind. Eng. Chem. Res., 59(23), 11054 (2020)
  79. Usman M, Hillestad M, Deng L, Int. J. Greenh. Gas Control., 71, 95 (2018)
  80. Cunha G, de Medeiros J, Araujo O, Mater. Sci. Forum, 965, 29 (2019)
  81. Hoff KA, Svendsen HF, Energy Procedia, 37, 952 (2013)
  82. Hoff KA, Juliussen O, Falk-Pedersen O, Svendsen HF, Ind. Eng. Chem. Res., 43(16), 4908 (2004)
  83. Quek VC, Shah N, Chachuat B, Sep. Purif. Technol., 258 (2021)
  84. Zheng JM, Xu YY, Xu ZK, J. Membr. Sci., 211(2), 263 (2003)
  85. Keshavarz P, Ayatollahi S, Fathikalajahi J, J. Membr. Sci., 325(1), 98 (2008)
  86. Fu K, Wang S, et al., A hybrid modeling approach, Part I, 2020.
  87. Zheng JM, Xu ZK, Li JM, Wang SY, Xu YY, J. Membr. Sci., 236(1), 145 (2004)
  88. Dindore VY, Brilman DWF, Versteeg GF, J. Membr. Sci., 251(1-2), 209 (2005)
  89. Thundyil MJ, Koros WJ, J. Membr. Sci., 125(2), 275 (1997)
  90. Lock SSM, Lau KK, Ahmad F, Shariff AM, Int. J. Greenh. Gas Control., 36, 114 (2015)
  91. Lau KK, Abu Bakar MZ, Ahmad AL, Murugesan T, Ind. Eng. Chem. Res., 49(12), 5834 (2010)
  92. Lau KK, Abu Bakar MZ, Ahmad AL, Murugesan T, J. Membr. Sci., 343(1-2), 16 (2009)
  93. Lu HG, Zheng YF, Cheng MD, J. Membr. Sci., 308(1-2), 180 (2008)
  94. Kimball E, et al., Oil & Gas Science and Technology, 69, 1047 (2013).
  95. Wang Z, Fang MX, Ma QH, Yu H, Wei CC, Luo ZY, J. Membr. Sci., 455, 219 (2014)
  96. Lock S, et al., Optimization of Membrane Thickness in Physical Aging Study of Polymeric Membranes, 12, 6699 (2017).
  97. Scholes CA, Encyclopedia of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.1407, 2016.