화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.10, 720-726, October, 2021
Rheological Percolation of Cellulose Nanocrystals in Biodegradable Poly(butylene succinate) Nanocomposites: A Novel Approach for Tailoring the Mechanical and Hydrolytic Properties
E-mail:,
Although biodegradable plastics are gradually emerging as an effective solution to alleviate the burgeoning plastic pollution, their performance is currently trivial for commercialization. A proposed two-pronged strategy to overcome this limitation includes (1) preparation of the nanocomposites from biorenewable nano-fillers to preserve their biodegradability and (2) tailoring their properties to meet the diverse demands in various applications. Herein, we report the preparation of biodegradable nanocomposites composed of poly(butylene succinate) (PBS) and cellulose nanocrystals (CNCs) (loading of 0.2-3.0 wt%) and propose a rheological strategy to tailor their performances. Depending on the shear frequencies, the rheological evaluation revealed two percolation thresholds at approximately 0.8 and 1.5 wt%. At high shear frequencies, the disappearance of the first threshold (0.8 wt%) and the sole persistence of the second one (1.5 wt%) indicated the collapse of the immature network of partially interconnected CNCs. The tensile and hydrolytic properties of the nanocomposites were found to undergo drastic changes at the thresholds. The tensile strength increased by 17% (from 33.3 to 39.2 MPa) up to 0.8 wt% CNC loading. However, the reinforcing efficiency of CNC decreases sharply with further incorporation, reaching nearly zero at 1.5 wt%. On the other hand, hydrolytic degradation of the nanocomposites was rapidly accelerated above 1.5 wt% CNC loading. Therefore, a thorough understanding of the rheological properties of nanocomposites is essential for the design and development of materials with tailored properties.
  1. Wong S, Ngadi N, Abdullah TAT, Inuwa IM, Renew. Sust. Energ. Rev., 50, 1167 (2015)
  2. Siddique R, Khatib J, Kaur I, Waste Manage., 28, 1835 (2008)
  3. Chakraborty I, Maity P, Sci. Total Environ., 728, 138882 (2020)
  4. Klemes JJ, Van Fan Y, Tan RR, Jiang P, Renew. Sust. Energ. Rev., 127, 109883 (2020)
  5. Bosq N, Aht-Ong D, Macromol. Res., 26(1), 13 (2018)
  6. Kim H, Jeon H, Shin G, Lee M, Jegal J, Hwang SY, Oh DX, Koo JM, Eom Y, Park J, Green Chem., 23, 2293 (2021)
  7. Kim H, Shin MS, Jeon H, Koo JM, Eom Y, Choi S, Shin G, Oh DX, Hwang SY, Park J, Int. J. Biol. Macromol., 173, 128 (2021)
  8. Lee S, Kim M, Song HY, Hyun K, Macromolecules, 52(20), 7904 (2019)
  9. Bertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F, New J. Chem., 42, 8384 (2018)
  10. Singha S, Hedenqvist MS, Polymers, 12, 1095 (2020)
  11. Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse GI, Zhang K, Li S, Jin P, Jin G, ACS omega, 3, 1187 (2018)
  12. Zare Y, Garmabi H, Rhee KY, Compos. Part B: Eng., 144, 1 (2018)
  13. Zheng Y, Fu G, Wang B, Pang C, Hall P, Sharmin N, J. Appl. Polym. Sci., 137, 49286 (2020)
  14. Zahran M, Marei AH, Int. J. Biol. Macromol., 136, 586 (2019)
  15. Estrellan CR, Iino F, Chemosphere, 80, 193 (2010)
  16. Park SA, Eom Y, Jeon H, Koo JK, Lee ES, Jegal J, Hwang SY, Oh DX, Park J, Green Chem., 21, 5212 (2019)
  17. Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK, Chem. Rev., 120(17), 9304 (2020)
  18. Song LZ, Wang ZK, Lamm ME, Yuan L, Tang CB, Macromolecules, 50(19), 7475 (2017)
  19. Wang L, Ando M, Kubota M, Ishihara S, Hikima Y, Ohshima M, Sekiguchi T, Sato A, Yano H, Compos. Part A: Appl. Sci. Manuf., 98, 166 (2017)
  20. Kwon G, Lee K, Kim D, Jeon Y, Kim UJ, You J, J. Hazard. Mater., 398, 123100 (2020)
  21. Hao LT, Eom Y, Tran TH, Koo JM, Jegal J, Hwang SY, Oh DX, Park J, Nanoscale, 12, 2393 (2020)
  22. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A, Biomacromolecules, 14(1), 248 (2013)
  23. Wu H, Nagarajan S, Shu J, Zhang T, Zhou L, Duan Y, Zhang J, Carbohydr. Polym., 197, 204 (2018)
  24. Son SM, Lee JE, Jeon JH, Lim SI, Kwon HT, Eom YH, Chae HG, Macromol. Res., 29(1), 33 (2021)
  25. Kim T, Jeon H, Jegal J, Kim JH, Yang H, Park J, Oh DX, Hwang SY, RSC Adv., 8, 15389 (2018)
  26. de Matos Costa AR, Crocitti A, de Carvalho LHDH, Carroccio SC, Cerruti P, Santagata G, Polymers, 12, 2317 (2020)
  27. Li J, Qiu Z, Carbohydr. Polym., 205, 211 (2019)
  28. Li C, Sun C, Wang C, Tan H, Xie Y, Zhang Y, Cellulose, 27, 7489 (2020)
  29. Shirali H, Rafizadeh M, Taromi FA, Macromol. Res., 23(8), 755 (2015)
  30. Delamarche E, Mattlet A, Livi S, Gerard JF, Bayard R, Massardier V, Front. Mater. Sci., 7, 7 (2020)
  31. Yin X, Li S, Wang L, He G, Yang Z, Polym. Korea, 41(2), 163 (2017)
  32. Barczewski M, Mysiukiewicz O, Polym. Korea, 42(2), 267 (2018)
  33. Chae DW, Kim BC, Macromol. Res., 18, 722 (2010)
  34. Wu S, Wu J, Huang G, Li H, Macromol. Res., 23(6), 537 (2015)
  35. Zhang G, Wu T, Lin W, Tan Y, Chen R, Huang Z, Yin X, Qu J, Compos. Sci. Technol., 145, 157 (2017)
  36. Porkodi P, Abhilash JK, Shukla HK, Rawat J, Polym. Bull., 77(8), 3937 (2020)