화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.105, 278-290, January, 2022
Theoretical study of SF6 decomposition products adsorption on metal oxide cluster-modified single-layer graphene
E-mail:
GIS plays an irreplaceable role in the modern electrical system. However, partial discharge will inevitably occur under insulation defect conditions and may lead to serious insulation malfunction. The online monitoring method based on gas sensor is a feasible method to diagnose the severity of partial discharge in GIS. In this paper, metal oxide (TiO2, Fe2O3, NiO) cluster-modified single-layer graphene was proposed as a novel gas sensor to detect the characteristic components of SF6 decomposition products, SOF2 and SO2F2. Density functional theory calculations were carried out to study the gas adsorption and sensing mechanisms. The adsorption structures of gas molecules and the metal oxide cluster-modified singlelayer graphene were built and optimized. Then, the most stable structure was selected to analyze the corresponding adsorption parameters. Calculation results showed that metal oxides decoration reduces the energy gap, improving the electrical conductivity and enhancing the adsorption activity of the graphene surface. According to DOS and CDD analyses, TiO2 modification obtained the best adsorption effect. Calculation results show that the metal-oxide-modified graphene sensor provides an effective method for effectively estimating the operating state of GIS by detecting SF6 decomposition products.
  1. Li XW, Zhao H, Murphy AB, J. Phys. D-Appl. Phys., 51, 19 (2018)
  2. Zhang S, Morcos MM, Srivastava KD, IEEE Trns. Dielectr. Electr. Insul., 24, 2746 (2017)
  3. Kobayashi S, IEEE Transactions On Power Delivery, 7, p.815 (1992).
  4. Cao W, Gui Y, Chen T, Xu L, Ding Z, Appl. Surf. Sci., 524 (2020)
  5. Wang Y, Gui YG, Ji C, Tang C, Zhou Q, Li J, Zhang XX, Appl. Surf. Sci., 459, 242 (2018)
  6. Cui H, Zhang XX, Chen DC, Tang J, Appl. Surf. Sci., 447, 594 (2018)
  7. Wei HL, Gui YG, Kang J, Wang WB, Tang C, Nanomaterials, 8, 12 (2018)
  8. Gui Y, Peng X, Liu K, Ding Z, Physica E, 119 (2020)
  9. He X, Gui Y, Xie J, Liu X, Wang Q, Tang C, Appl. Surf. Sci., 500 (2020)
  10. Cui H, Zhang XX, Zhang J, Tang J, Mol. Phys., 116, 1749 (2018)
  11. Zhang XX, Cui ZL, Yi L, Li YL, Xiao HY, Chen DC, Appl. Surf. Sci., 457, 745 (2018)
  12. Tenbohlen S, Denissov D, Hoek SM, Markalous SM, IEEE Trns. Dielectr. Electr. Insul., 15, 1544 (2008)
  13. Moffat AC, Stead AH, Smalldon KW, J. Chromatogr., 90, 19 (1974)
  14. Zhang J, He W, Zhang M, Zhao H, Yang Q, Guo S, Wang X, Zheng X, Cao L, Rev. Sci. Instrum., 86 (2015)
  15. Zhang J, Zhu W, Filippov DA, He W, Chen D, Li K, Geng S, Zhang Q, Jiang L, Cao L, Timilsina R, Srinivasan G, Rev. Sci. Instrum., 90 (2019)
  16. Modi A, Koratkar N, Lass E, Wei BQ, Ajayan PM, Nature, 424, 171 (2003)
  17. Korotcenkov G, Cho BK, Sens. Actuators B-Chem., 244, 182 (2017)
  18. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  19. Huang X, Qi XY, Boey F, Zhang H, Chem. Soc. Rev., 41, 666 (2012)
  20. Liu YX, Dong XC, Chen P, Chem. Soc. Rev., 41, 2283 (2012)
  21. Pereira VM, Neto AHC, Phys. Rev. Lett., 103, 4 (2009)
  22. Chabot V, Higgins D, Yu AP, Xiao XC, Chen ZW, Zhang JJ, Energy Environ. Sci., 7, 1564 (2014)
  23. He X, Gui Y, Liu K, Xu L, Appl. Surf. Sci., 521 (2020)
  24. Zemski KA, Justes DR, Castleman AW, J. Phys. Chem. B, 106(24), 6136 (2002)
  25. Guo X, Huang Y, Yu W, Yu X, Han X, Zhai H, Microchem J., 157 (2020)
  26. Liang XM, Cheng QF, Composites Communications, 10, 122 (2018)
  27. Gui Y, Li W, He X, Ding Z, Tang C, Xu L, Appl. Surf. Sci., 507 (2020)
  28. Maruhn JA, Reinhard PG, Suraud E, Simple Models of Many-Fermion Systems, Chapter 6, 143 (2010).
  29. Car R, Phys. Rev. Lett., 55, 2471 (1985)
  30. Perdew JP, Yue W, Phys. Rev. B, 33, 8800 (1986)
  31. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C, Phys. Rev. B, 48, 4978 (1993)
  32. Ernzerhof M, Scuseria GE, J. Chem. Phys., 110(11), 5029 (1999)
  33. Maximoff SN, Ernzerhof M, Scuseria GE, J. Chem. Phys., 120(5), 2105 (2004)
  34. Zhang XX, Cui H, Dong XC, Chen DC, Tang J, Appl. Surf. Sci., 420, 825 (2017)
  35. Grimme S, J. Comput. Chem., 27, 1787 (2006)
  36. Chadi DJ, Physical Review B Condensed Matter, 16, 1746 (1977)
  37. Zhang XX, Yu L, Gui YG, Hu WH, Appl. Surf. Sci., 367, 259 (2016)
  38. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M, J. Phys. Chem. B, 105(2), 569 (2001)
  39. Gui YG, Li T, He X, Ding ZY, Yang PG, Nanomaterials, 9, 16 (2019)