화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 607-612, December, 2021
실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄
Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes Yong Hun Lee, Eunji Kim and Jin Hong
E-mail:
초록
실리콘(Si) 활물질은 낮은 전위와 높은 에너지 밀도를 가지고 있어 현재 활용되고 있는 흑연을 대체할 수 있는 소재로 기대되고 있다. 그러나 반복적인 충, 방전 과정 중 부피 팽창으로 인한 실리콘 입자의 붕괴와 지속적인 전해질 분해반응이 문제점으로 지적되고 있다. 이와 같은 문제를 해결하기 위해 본 연구에서는 실리콘 음극에 대한 효과적인 바인더로서 가교 결합이 가능한 Castor oil 기반의 수분산 폴리우레탄을 제조하였으며(CWPU), 이를 다량의 Oxirane 작용기를 가진 Tris(2,3-epoxypropyl) isocyanurate (TGIC)와 결합시켜 기계적으로 안정한 3차원 네트워크 구조를 형성하였다. CWPU-TGIC 바인더로 제조된 실리콘 음극은 안정적인 장기 수명 특성뿐만 아니라 우수한 방전 용량을 나타내었다. 이러한 결과는 CWPU-TGIC 바인더가 장기간 반복되는 충, 방전 과정 동안 실리콘 음극의 큰 부피 변화를 효과적으로 완화하는 것으로 분석되었다. 본 연구 결과는 실리콘 음극의 전기화학적 특성을 향상시키기 위한 효과적인 친환경 바인더의 가능성을 제시한다.
Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.
  1. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  2. Jung CH, Kim KH, Hong SH, ACS Appl. Mater. Interfaces, 11, 26753 (2019)
  3. Liu J, Zhang Q, Zhang T, Li JT, Huang L, Sun SG, Adv. Funct. Mater., 25(23), 3599 (2015)
  4. Yao DH, Yang Y, Deng YH, Wang CY, J. Power Sources, 379, 26 (2018)
  5. Zhu LL, Du FH, Zhuang Y, Dai H, Cao HS, Adkins J, Zhou Q, Zheng JW, J. Electroanal. Chem., 845, 22 (2019)
  6. Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW, Nano Lett., 14, 864 (2014)
  7. Kim JS, Choi W, Cho KY, Byun D, Lim J, Lee JK, J. Power Sources, 244, 521 (2013)
  8. Zhou J, Qian T, Wang M, Xu N, Zhang Q, Li Q, Yan C, ACS Appl. Mater. Interfaces, 8, 5358 (2016)
  9. Ashuri M, He Q, Shaw LL, Nanoscale, 8, 74 (2016)
  10. Azam MA, Safie NE, Ahmad AS, Yuza NA, Zulkifli NSA, J. Energy Storage, 33, 102096 (2021)
  11. Zou F, Manthiram A, Adv. Eng. Mater., 10, 200250 (2020)
  12. Yuan H, Huang JQ, Peng HJ, Titirici MM, Xiang R, Chen R, Liu Q, Zhang Q, Adv. Eng. Mater., 8, 180210 (2018)
  13. Kwon TW, Jeong YK, Deniz E, AlQaradawi SY, Choi JW, ACS Nano, 9, 11317 (2015)
  14. Luo C, Du L, Wu W, Xu H, Zhang G, Li S, Wang C, Lu Z, Deng Y, ACS Sustain. Chem. Eng., 6, 12621 (2018)
  15. Li JT, Wu ZY, Lu YQ, Zhou Y, Huang QS, Huang L, Sun SG, Adv. Eng. Mater., 7, 170118 (2017)
  16. Lee HA, Shin M, Kim J, Choi JW, Lee H, Adv. Mater., 33, 200746 (2021)
  17. Jeong YK, Choi JW, ACS Nano, 13, 8364 (2019)
  18. Zhang G, Yang Y, Chen Y, Huang J, Zhang T, Zeng H, Wang C, Liu G, Deng Y, Small, 14, 180089 (2018)
  19. Wei L, Chen C, Hou Z, Wei H, Sci. Rep., 6, 19583 (2016)
  20. Higgins TM, Park SH, King PJ, et al., ACS Nano, 10, 3702 (2016)
  21. Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y, Zheng H, Electrochim. Acta, 269, 405 (2018)
  22. Kwon TW, Choi JW, Chem. Soc. Rev., 47, 2145 (2018)
  23. Shi M, Yang J, Wang X, J. Polym. Res., 28 (2021)
  24. Wang X, Zhang Y, Liang H, Zhou X, Fang C, Zhang C, Luo Y, Carbohydr. Polym., 208, 391 (2019)
  25. Chen CH, Chiang CL, Polymers, 11, 2720 (2019)
  26. Ren L, Ma X, Zhang J, Qiang T, Polymer, 194, 122370 (2020)
  27. Xia Y, Larock RC, Macromol. Mater. Eng., 296, 703 (2011)
  28. You R, Han X, Zhang Z, Li L, Li C, Huang W, Wang J, Xu J, Chen S, Ionics, 25, 4109 (2019)
  29. Gendensuren B, He C, Oh ES, Korean J. Chem. Eng., 37(2), 366 (2020)
  30. Rohan R, Kuo TC, Chiou CY, Chang YL, Li CC, Lee JT, J. Power Sources, 396, 459 (2018)
  31. Joseph J, Moon J, Kong TW, Kim DH, Oh JS, Elastomers Composites, 55, 13 (2020)
  32. Chen C, Lee SH, Cho M, Kim J, Lee Y, ACS Appl. Mater. Interfaces, 8, 2658 (2016)
  33. Kuo TC, Chiou CY, Li CC, Lee JT, Electrochim. Acta, 327, 135011 (2019)
  34. Yu L, Liu J, He S, Huang C, Gan L, Gong Z, Long M, J. Phys. Chem. Solids, 135, 109113 (2019)
  35. Bulut E, Guzel E, Yuca N, Taskin OS, J. Appl. Polym. Sci., 137, 48303 (2019)
  36. Li C, Shi T, Yoshitake H, Wang H, J. Mater. Chem. A, 4, 16982 (2016)
  37. Si Q, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N, J. Power Sources, 241, 744 (2013)
  38. Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH, Adv. Funct. Mater., 24(37), 5904 (2014)