화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 653-658, December, 2021
플라즈마 불소화에 의해 제조된 불소 도핑 PVDF의 표면 및 부식방지 특성
Surface and Corrosion Protection Properties of Fluorine Doped PVDF by Plasma Fluorination
E-mail:
초록
Polyvinylidene fluoride (PVDF)는 우수한 가공성을 가지고 있어 코팅 재료로 유망하지만 다른 불소계 고분자에 비하여 소수성이 약하여 부식 방지 등 그 응용에 제한이 있다. 본 연구에서는 PVDF의 부식방지 특성을 향상시키고자 사불화탄소(CF4) 가스를 이용하여 플라즈마 불소화를 수행하였고, 유량에 따른 불소 함량 및 소수성 변화를 고찰하고 부식방지 특성을 확인하였다. PVDF 막 표면의 불소 함량은 사불화탄소 유량이 증가함에 따라 46.70%로 증가하였으나 그 표면자유에너지는 불소함량의 증가와 일치하지 않았다. 한편, PVDF 표면의 표면 거칠기는 불소화 유량에 따라 최대 150% 증가하다가 다시 감소하는 경향을 보였다. 이는 플라즈마 불소화는 불소화 기능기 도입 및 표면식각으로 인하여 표면자유에너지에 영향을 주는 것으로 판단된다. 또한, PVDF 코팅된 철판의 부식 정도는 미처리 철판에 비하여 표면 산소 함량이 49.2%에서 19.0% 이하로 크게 개선되었으며, 특히, 불소화 처리된 PVDF의 산소함량은 13.6%으로 불소화 처리되지 않은 PVDF보다 28.4 % 정도 낮아져 우수한 부식방지 특성을 보이는 것으로 관찰되었다.
Polyvinylidene fluoride (PVDF) is a promising coating material because of its outstanding processability. The PVDF coating, however, has limitations in anti-corrosion application due to its weak hydrophobicity compared to that of other fluoropolymers. In this study, plasma fluorination was performed using carbon tetrafluoride (CF4) gas to improve anti-corrosion properties of PVDF. The fluorine content and hydrophobicity of PVDF were investigated in different CF4 flow rates, followed by the determination of anti-corrosion properties. The fluorine content on the surface of the PVDF film increased by up to 46.70%, but the surface free energy was independent of CF4 flow rate. Meanwhile, the surface roughness of the PDVF film tended to increase by up to 150% and then decrease with increasing CF4 flow rate. It is considered that the plasma fluorination affects the surface free energy due to the introduction of fluorine functional groups and surface etching. In addition, the degree of corrosion of the PVDF-coated Fe plate was significantly reduced from 49.2% to 19.0% compared to that of the uncoated Fe plate. In particular, the degree of corrosion of the fluorinated PVDF-coated Fe plate was 13.6%, which was 28.4% lower than that of the PVDF-coated Fe plate, showing improved anti-corrosion protection.
  1. Xiang T, Han Y, Guo Z, Wang R, Zheng S, Li S, Li C, Dai X, ACS Sustain. Chem. Eng., 6, 5598 (2018)
  2. Cho EC, Chang-Jian CW, Chen HC, Chuang KS, Zheng JH, Hsiao YS, Lee KC, Huang JH, Chem. Eng. J., 314, 347 (2017)
  3. Liu YC, Huang WJ, Wu SH, Lee M, Yeh JM, Chen HH, Corrosion Sci., 138, 1 (2018)
  4. Peng CY, Chen ZY, Tiwari MK, Nat. Mater., 17(4), 355 (2018)
  5. Leivo E, Wilenius T, Kinos T, Vuoristo P, Mantyla T, Prog. Org. Coat., 49, 69 (2004)
  6. Kim YH, Kwon YS, Shon MY, Moon MJ, J. Electrochem. Sci. Technol., 9, 1 (2018)
  7. Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
  8. Kang GD, Cao YM, J. Membr. Sci., 463, 145 (2014)
  9. Cui MK, Xu CC, Shen YQ, Tian HF, Feng H, Li J, Thin Solid Films, 657, 88 (2018)
  10. Tressaud A, Durand E, Labrugcre C, Kharitonov AP, Simbirtseva GV, Kharitonova LN, Dubois M, Acta. Chim. Slov., 60, 495 (2013)
  11. Tressaud A, Durand E, Labrugere C, Kharitonov AP, Kharitonova LN, J. Fluor. Chem., 128, 378 (2007)
  12. Jo H, Kim KH, Jung MJ, Park JH, Lee YS, Appl. Surf. Sci., 409, 117 (2017)
  13. Kim JH, Kim DY, Jeong E, Lee YS, Appl. Surf. Sci., 360, 1009 (2016)
  14. Im JS, Bae TS, Lee SK, Lee SH, Jeong E, Kang PH, Lee YS, Mater. Res. Bull., 45(11), 1641 (2010)
  15. Kim DY, In SJ, Lee YS, Polym. Korea, 37(3), 316 (2013)
  16. Lee RE, Lim CH, Kim MJ, Lee YS, Appl. Chem. Eng., 32(1), 55 (2021)
  17. Zheng R, Chen Y, Wang J, Song JF, Li XM, He T, J. Membr. Sci., 555, 197 (2018)
  18. Resnik M, Zaplotnik R, Mozetic M, Vesel A, Materials, 11, 311 (2018)
  19. Jung MJ, Yu HR, Lee YS, Catal. Lett., 26, 112 (2018)
  20. Woo YC, Chen Y, Tijing LD, Phuntsho S, He T, Choi JS, Kim SH, Shon HK, J. Membr. Sci., 529, 234 (2017)
  21. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  22. Lee MH, Kim HY, Kim J, Han JT, Lee YS, Woo JS, Carbon Lett., 30, 345 (2020)
  23. Merchan-Breuer D, Murphy E, Berka B, Echeverria E, McIlroy DN, Merchan-Merchan W, Carbon Lett., 31, 389 (2021)
  24. Tressaud A, Durand E, Labrugere C, J. Fluor. Chem., 125, 1639 (2004)
  25. Kim KH, Kim MJ, Kim JW, Lee KM, Kim HG, Lee YS, Carbon Lett., 29, 643 (2019)
  26. Nguyen QD, Chung KH, Tribol. Lubr., 35, 169 (2019)
  27. Rha JJ, Jeong YS, Kim WD, Trans. Korean Soc. Mech. Eng. B, 32, 143 (2008)
  28. Lee SH, Appl. Sci. Converg. Technol., 16, 250 (2007)
  29. Owens DK, Wendt R, J. Appl. Polym. Sci., 13, 1741 (1969)
  30. Yoon MA, Kim C, Won S, Jung HJ, Kim JH, Kim KS, Tribol. Lubr., 35, 9 (2019)
  31. Park IJ, Lee SB, Koh J, HWAHAK KONGHAK, 30, 303 (1992)
  32. Wang XC, Zhang Q, Powder Technol., 371, 55 (2020)
  33. Bodner T, Behrendt A, Prax E, Wiesbrock F, Monatsh. Chem., 143, 717 (2012)
  34. Jeong E, Bae TS, Yun SM, Woo SW, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 373, 36 (2011)
  35. Jang SK, Lee SJ, Park JC, Kim SJ, Corros. Sci. Tech., 14, 232 (2015)