화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 679-683, December, 2021
Lecithin/LiCl 유기젤의 펜탄올 영향에 대한 유변학적 연구
Effects of Pentanol on the Rheology of Lecithin/LiCl Oranogel
E-mail:
초록
양친매성 인지질의 한 종류인 레시틴은 데케인과 같은 비극성 유기용매상에서 구형의 역마이셀을 형성한다. 염화리튬과 같은 이온이 레시틴용액에 첨가될 때, 유기졸이 역실린더형 마이셀의 얽힘으로 인해 유기젤로 변환하게 된다. 이번 연구에서, 우리는 레시틴과 염화리튬 혼합물의 유변학적 성질에 대한 보조계면활성제로서의 펜탄올 효과를 연구하고자 한다. 유변학 연구를 통해, 유기젤에 펜탄올이 첨가될 때, 유기젤의 점도와 탄성 성질이 감소하였다. 이러한 감소는 역실린더 마이셀의 길이의 감소가 그 원인이며, 엑스선 소각 산란분석기를 통해 이를 확인하였다.
Lecithin, a zwitterionic phospholipid, forms spherical reverse micelles in nonpolar organic solvents such as decane. The addition of monovalent ions like lithium chloride (LiCl) to lecithin organosols induces the transformation of organosols into organogels due to the entanglement of reverse cylindrical micelles. In this study, we investigate the effect of pentanol acting as co-surfactant on rheological properties of lecithin/LiCl mixtures. From rheological studies, we find that the viscosity and elastic property of organogels decreased upon the addition of pentanol to organogels. The decrease in viscosity and elastic property can be attributed to the shortening of reverse cylindrical micelles confirmed by small angle X-ray scattering (SAXS).
  1. Israelachvili JN, Intermolecular and Surface Forces, Academic Press, San Diego, CA, USA (1991).
  2. Evans DF, Wennerstrom H, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, Wiley-VCH, New York (2001).
  3. Willard DM, Riter RE, Levinger NE, J. Am. Chem. Soc., 120, 4151 (1998)
  4. Shchipunov YA, Colloids Surf. A: Physicochem. Eng. Asp., 183-185, 541 (2001)
  5. Scartazzini R, Luisi PL, J. Phys. Chem., 92, 829 (1988)
  6. Lee HY, Diehn KK, Ko SW, Tung SH, Raghavan SR, Langmuir, 26(17), 13831 (2010)
  7. Tung SH, Huang YE, Raghavan SR, J. Am. Chem. Soc., 128(17), 5751 (2006)
  8. Lin ST, Lin CS, Chang YY, Whitten AE, Sokolova A, Wu CM, Ivanov VA, Khokhlov AR, Tung SH, Langmuir, 32(46), 12166 (2016)
  9. Lee CR, Lee YK, Oh EJ, Jin KS, Lee HY, J. Mol. Liq., 316, 113790 (2020)
  10. Jung YG, Lee CR, Kim HJ, Kim MG, Jin KS, Lee HY, Colloids Surf. A: Physicochem. Eng. Asp., 607, 125441 (2020)
  11. Mukherjee K, Moulik SP, Mukherjee DC, Langmuir, 9, 1727 (1993)
  12. Dutt GB, J. Phys. Chem. B, 108(23), 7944 (2004)
  13. Lee HY, Diehn KK, Sun KS, Chen TH, Raghavan SR, J. Am. Chem. Soc., 133(22), 8461 (2011)
  14. Shrestha LK, Shrestha RG, Aramaki K, Langmuir, 27(10), 5862 (2011)
  15. Terech P, Weiss RG, Chem. Rev., 97(8), 3133 (1997)
  16. Knezevic ZD, Siler-Marinkovic SS, Mojovic LV, Appl. Microbiol. Biotechnol., 49(3), 267 (1998)
  17. Madamwar D, Thakar A, Appl. Biochem. Biotechnol., 118(1-3), 361 (2004)
  18. Dreher F, Walde P, Walther P, Wehrli E, J. Control. Release, 45, 131 (1997)
  19. Kreilgaard M, Adv. Drug Deliv. Rev., 54, S77 (2002)
  20. Lee HJ, Kim HJ, Park DG, Jin KS, Chang JW, Lee HY, Langmuir, 36(28), 8174 (2020)
  21. Kline SR, J. Appl. Crystallogr., 39, 895 (2006)
  22. Pedersen JS, Adv. Colloid Interface Sci., 70, 171 (1997)
  23. Pedersen JS, Schurtenberger P, Macromolecules, 29(23), 7602 (1996)
  24. Macosko CW, Rheology: Principles, Measurements, and Applications, Wiley-VCH, Weinheim, Germany (1994).
  25. Glatter O, J. Appl. Cryst., 10, 415 (1977)
  26. Ogunsola OA, Kraeling ME, Zhong S, Pochan DJ, Bronaugh RL, Raghavan SR, Soft Matter, 8, 10226 (2012)