화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 684-689, December, 2021
다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법
Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase
E-mail:
초록
본 논문에서는 경제적이며 일회용 센서칩으로 제작 가능한 스크린프린팅한 탄소칩 전극[screen printed carbon electrode (SPCE)]에 다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제를 융합하여 제작된 나노복합체를 도포한 센서를 개발하고 이를 내분비 저하 물질이면서, 비만, 당뇨병 및 심혈관질환 등의 만성질환 및 성조숙증, 여성 생식 질환, 불임 등과 관련성이 입증된 비스페놀A 농도 분석에 적용하고자 하였다. 다중벽 탄소 나노 튜브를 산화시켜 음전하를 띠게 한 후 양전하를 띠는 전도성고분자인 polydiallyldimethylammonium (PDDA)로 감싸준 후 용액의 pH를 조절하여 음전하를 띠게 한 티로시나아제를 첨가하여 최종적으로 산화된 다중벽 탄소 나노 튜브-PDDA-티로시나아제 나노복합체를 형성하였다. 상기 나노복합체를 물리적으로 흡착시킨 센서칩 표면을 비스페놀A 용액에 접촉시키고, 비스페놀A가 티로시나아제와 2단계의 효소-기질반응을 할 수 있는 충분한 시간(3분)을 주면, 생성물[4,4'-isopropylidenebis(1,2-benzoquinone)]이 생성된다. 이 때 순환전압전류법과 시차펄스전압전류법을 이용하여 생성물[4,4'-isopropylidenebis(1,2-benzoquinone)]을 환원(-0.08V vs. Ag/AgCl)하였을 때 얻어진 전류값 변화를 측정하여 비스페놀A의 농도를 정량적으로 분석하였다. 추가적으로 개발한 센서 전극표면에 비스페놀A와 유사한 비스페놀S 방해물질을 비스페놀A와 함께 접촉 하였을 때 비스페놀A에 대한 우수한 선택성을 확인하였다. 최종적으로 제작한 센서를 실험실에서 제작한 환경 시료안에 비스페놀A의 농도를 분석하는 데 적용함으로써 실제 현장에서 활용될 수 있는 가능성을 시사하였다.
In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi- walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.
  1. Lee YJ, Kim GJ, Culinary Science & Hospitality Research, 27, 133 (2021).
  2. LAKIND JS, NAIMAN DQ, J. Expo. Sci. Environ. Epidemiol., 21, 272 (2011)
  3. Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV, Environ. Health Perspect., 111, 1180 (2003)
  4. DARK WA, CONRAD EC, CROSSMAN JLW, J. Chromatogr. A, 91, 247 (1974)
  5. Segner H, Caroll K, Fenske M, et al., Ecotoxicol. Environ. Saf., 54, 302 (2003)
  6. Dodds EC, Lawson W, Proc. Royal Soc. B, 125, 222 (1938)
  7. Sohoni P, Sumpter JP, J. Endocrinol., 158, 327 (1998)
  8. Rochester JR, Reprod. Toxicol., 42, 132 (2013)
  9. vom Saal FS, Hughes C, Environ. Health Perspect., 113, 926 (2005)
  10. Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K, Hum. Reprod., 20, 2325 (2005)
  11. Wetherill YB, Petre CE, Monk KR, Puga A, Knudsen KE, Mol. Cancer Ther., 1, 515 (2002)
  12. Anderson OS, Nahar MS, Faulk C, et al., Environ. Mol. Mutagen., 53, 334 (2012)
  13. Kundakovic M, Champagne FA, Brain Behav. Immun., 25, 1084 (2011)
  14. Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM, Prins GS, Reprod. Toxicol., 24, 240 (2007)
  15. Tsalbouris A, Kalogiouri NP, Kabir A, Furton KG, Samanidou VF, Microchem. J., 162, 105846 (2021)
  16. Mercogliano R, Santonicola S, Food Chem. Toxicol., 114, 98 (2018)
  17. Wang DX, Wang XC, Hu QJ, Zhang CX, Li F, Wang FL, Feng QF, Food Anal. Methods, 14, 441 (2020)
  18. Jia M, ChenS, Shi T, Li C, Wang Y, Zhang H, Food Chem., 344, 128602 (2021)
  19. Lee EH, Lee SK, Kim MJ, Lee SW, Food Chem., 287, 205 (2019)
  20. Kim DS, Lee BH, Korean J. Chem. Eng., 36(9), 1509 (2019)
  21. Lu Y, Wang Q, Zhang C, Li S, Feng S, Wang S, Food Anal. Methods, 14, 127 (2020)
  22. Sarikokba, Tiwari D, Prasad SK, Kim DJ, Choi SS, Lee SM, Appl. Chem. Eng., 31(3), 237 (2020)
  23. Moon SH, Kim JY, Choi HK, Kim MG, Lee YS, Lee KY, Appl. Chem. Eng., 32(3), 229 (2021)
  24. Li JJ, Si Y, Lee HJ, Appl. Chem. Eng., 32(3), 253 (2021)
  25. Liu Y, Yao L, He L, Liu N, Piao Y, Sensors, 19, 1619 (2019)
  26. Wu L, Yan H, Wang J, Liu G, Xie W, J. Electrochem. Soc, 166, B562 (2019)
  27. Wang X, Lu X, Wu L, Chen J, Biosens. Bioelectron., 65, 295 (2015)
  28. Lu X, Wang X, Wu L, Wu L, Dhanjai Fu L, Gao Y, Chen J, ACS Appl. Mater. Interfaces, 8, 16533 (2016)
  29. Zhao J, Cong L, Ding Z, Zhu X, Zhang Y, Li S, Liu J, Chen X, Hou H, Fan Z, Guo M, Microchem. J., 159, 105439 (2020)
  30. Han M, Qu Y, Chen S, Wang Y, Zhang Z, Ma M, Wang Z, Zhan G, Li C, Microchim. Acta, 180, 989 (2013)
  31. Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N, Biosens. Bioelectron., 74, 830 (2015)
  32. Wee Y, Park S, Kwon YH, Ju Y, Yeon KM, Kim J, Biosens. Bioelectron., 132, 279 (2019)
  33. Piao Y, Jin Z, Lee D, Lee HJ, Na HB, Hyeon T, Oh MK, Kim J, Biosens. Bioelectron., 26, 3192 (2011)
  34. Li J, Si Y, Nde DT, Lee HJ, Appl. Chem. Eng., 32(4), 461 (2021)
  35. Mendum T, Stoler E, VanBenschoten H, Warner JC, Green Chem. Lett. Rev., 4, 81 (2011)
  36. de Oliveira O, Ferreira L, Marystela G, de Lima Leite F, Da Roz AL, Nanoscience and its Applications, (2016).
  37. Skoog DA, West DM, Holler FJ, Crouch SR, Fundamentals of analytical chemistry, (2013).
  38. Macca C, Wang J, Anal. Chim. Acta, 303, 265 (1995)