Applied Chemistry for Engineering, Vol.32, No.6, 690-694, December, 2021
중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성
Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites
E-mail:
초록
본 연구에서는 글루코스를 전구체로 사용하여 수열합성방법을 통해 구형탄소입자(carbon sphere, CS)를 제조하였다. 200 nm, 500 nm, 1,200 nm 크기의 중공형 TiO2 (H-TiO2)는 CS/TiO2 core-shell 구조를 졸-겔 법과 열처리 방법으로 합성하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 H-TiO2의 물리적 특성을 측정하였다. H-TiO2/polyacrylate (PA) 복합체의 UV-Vis-NIR 분석을 통해 색상변화와 일사반사율을 얻었으며, 실험실에서 제작한 차열온도 측정기를 통해 차열온도를 측정하였다. H-TiO2/PA 복합체는 열전도도가 낮은 건조공기로 채워진 중공구조에 의한 우수한 차열 특성과 근적외선 반사율을 보였다. H-TiO2/PA 복합체에서 중공구의 크기가 증가함에 따라 열차단 특성이 증가하였다. 1,200 nm 중공 크기의 H-TiO2를 혼합한 PA 필름에서 측정된 차열온도가 투명 유리판의 차열온도보다 26 °C 감소하였다.
Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 °C compared to that of the transparent glass counterpart.
- Santamouri M, Cartalis C, Synnefa A, Kolokosta D, Ener. Build., 98, 119 (2015)
- Manoli C, Fatichi S, Scapfer M, Yu K, Crowther TW, Meili N, Burlando P, Katul GG, Zeid E, Science, 573, 55 (2019)
- Mora C, Dousset B, Caldwall I, et al., Nat. Clim. Chang, 7, 501 (2017)
- Kousis I, Pisello AL, Environ. Res. Lett, 15, 1 (2020)
- Santamouris M, Sol. Energy, 102, 682 (2014)
- Mahltig B, Bottcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T, Thin Solid Films, 485(1-2), 108 (2005)
- Cozza ES, Alloisio M, Comite A, Di Tanna G, Vicini S, Sol. Energy, 116, 108 (2015)
- Guo C, Yin S, Sato T, J. Mater. Chem., 21, 5099 (2011)
- Wang JL, Li YQ, Byon YJ, Mei SG, Zhang GL, Powder Technol., 235, 303 (2013)
- Lu X, Yu G, Hu B, Zhang J, Dong Q, J. Coat. Technol. Res., 11, 567 (2014)
- Soumya S, Mohamed AP, Mohan K, Ananthakumar S, Sol. Energy Mater. Sol. Cells, 143, 335 (2015)
- Ye C, Wen X, Lan J, Cai Z, Pi P, Xu S, Qian Y, Pigment Resin. Technol., 45, 45 (2016)
- Wu K, Xiang S, Zhu W, Bian R, Wang C, Cai D, Prog. Org. Coat., 113, 39 (2017)
- Kil HS, Rhee SW, Appl. Chem. Eng., 27(1), 16 (2016)
- Mariappan T, Agarwal A, Ray S, Prog. Org. Coat., 111, 67 (2017)
- Gao Q, Wu X, Xia Z, Fan Y, Powder Technol., 350, 433 (2017)
- Kim HJ, Lee HJ, Kim DS, Mater. Des., 150, 188 (2018)
- Kim DW, Ma YK, Kim JS, Appl. Chem. Eng., 31(1), 43 (2020)
- Hanaor DA, Chironi I, Karatchevtseva I, Triani G, Sorrell CC, Adv. Appl. Ceram., 111, 149 (2012)
- Bao Y, Kang Q, Ma J, Colloids Surf. A: Physicochem. Eng. Asp., 537, 69 (2018)
- Kang Q, Bao Y, Li M, Ma J, Prog. Org. Coat., 112, 153 (2017)
- Sandin O, Nordin J, Jonsson M, J. Coat. Technol. Res., 14, 817 (2017)
- Long J, Jiang C, Zhu J, Song Q, Hu J, Particuology, 49, 33 (2020)
- Li M, Li W, Liu S, J. Mater. Res., 27, 1117 (2012)
- Berns RS, Billmeyer and Saltzman, Principles of Color Technology, 3th ed, 109-113, John Wily & Sons, NY, USA (2000).
- Yuan J, An Z, Li B, Zhang J, Particuology, 10, 475 (2012)
- Ruckdeschel P, Philipp A, Retsch M, Adv. Funct. Mater., 27, 170225 (2017)