화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.3, 229-236, June, 2021
전기화학적 방법을 통한 금속 유기 골격체 합성
Electrochemical Synthesis of Metal-organic Framework
E-mail:, ,
초록
금속 유기 골격체는 최근 20년간 센서, 촉매, 에너지 저장과 같은 많은 응용분야에서 관심을 받아온 물질이다. 이 물질을 합성하기 위해 수열 합성, 유기용매열과 같은 합성법이 제시되어 왔으나, 그 공정이 복잡하면서 고비용.장시간이 소요된다는 문제점이 제기되어 왔다. 이를 해결하기 위한 전기화학적 합성법이 새롭게 제시되었는데, 간단한 준비절차와 특정한 온도.압력 조건 없이 합성할 수 있어 기존 합성법의 단점을 보완한다는 특징이 있다. 이에 본 총설논문에서는 전기화학적으로 합성 가능한 금속 유기 골격체의 종류와 전기화학적 합성 메커니즘을 다루고 있다. 전기화학적 합성법을 통해 형성된 금속 유기 골격체를 적용한 응용분야 연구동향을 정리하였다.
During the last two decades, metal-organic frameworks (MOFs) have been drawn attention due to their high specific surface area, porosity, and catalytic activities that allow to use in many applications such as sensor, catalysis, energy storage, etc. To synthesize MOFs hydrothermal or solvothermal method were generally used. However, these methods require high-cost equipment and long time-spend for the synthesis with multi-step process. In contrast, electrochemical synthesis has been considered as a simple and easy process under the ambient conditions. In this review, we described the mechanism of electrochemical MOFs synthesis by the number of configured electrodes system, with the recent reports of various applications.
  1. Paz FAA, Klinowski J, Vilela SMF, Tome JPC, Cavaleiro JAS, Rocha J, Chem. Soc. Rev., 41, 1088 (2012)
  2. Brozek CK, Dinca M, Chem. Soc. Rev., 43, 5456 (2014)
  3. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341, 123044 (2013)
  4. Tomic EA, J. Appl. Polym. Sci., 9, 3745 (1965)
  5. Yaghi OM, Li GM, Li HL, Nature, 378(6558), 703 (1995)
  6. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM, Nature, 402, 276 (1999)
  7. Wei JZ, Gong FX, Sun XJ, Li Y, Zhang T, Zhao XJ, Zhang FM, Inorg. Chem., 58(10), 6742 (2019)
  8. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM, Science, 329(5990), 424 (2010)
  9. Lei J, Qian R, Ling P, Cui L, Ju H, Trends Anal. Chem., 58, 71 (2014)
  10. Cui Y, Chen B, Qian G, Coord. Chem. Rev., 273, 76 (2014)
  11. Achmann S, Hagen G, Kita J, Malkowsky IM, Kiener C, Moos R, Sensors, 9, 1574 (2009)
  12. Wang JL, Wang C, Lin W, ACS Catal., 2, 2630 (2012)
  13. Nasalevich MA, Van Der Veen M, Kapteijn F, Gascon J, CrystEngComm, 16, 4919 (2014)
  14. Nasalevich MA, Goesten MG, Savenije TJ, Kapteijn F, Gascon J, Chem. Commun., 49, 10575 (2013)
  15. Morozan A, Jaouen F, Energy Environ. Sci., 5, 9269 (2012)
  16. Yang J, Xiong P, Zheng C, Qiu H, Wei M, J. Mater. Chem. A, 2, 16640 (2014)
  17. Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, De Vos DE, Fransaer J, ChemElectroChem, 1, 1182 (2014)
  18. Babu KF, Kulandainathan MA, Katsounaros I, Rassaei L, Burrows AD, Raithby PR, Marken F, Electrochem. Commun., 12, 632 (2010)
  19. Li JR, Sculley J, Zhou HC, Chem. Rev., 112(2), 869 (2012)
  20. Ma S, Zhou HC, Chem. Commun., 46, 44 (2010)
  21. Sabouni R, Kazemian H, Rohani S, Environ. Sci. Pollut. Res., 21, 5427 (2014)
  22. Couck S, Denayer JFM, Baron GV, Remy T, Gascon J, Kapteijn F, J. Am. Chem. Soc., 131(18), 6326 (2009)
  23. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY, Chem. Soc. Rev., 43, 6011 (2014)
  24. Gascon J, Corma A, Kapteijn F, Llabres FX, ACS Catal., 4, 361 (2014)
  25. Zhang T, Lin W, Chem. Soc. Rev., 43, 5982 (2014)
  26. Li Y, Chen C, Sun X, Dou J, Wei M, ChemSusChem, 7, 2469 (2014)
  27. Zhang M, Gu ZY, Bosch M, Perry Z, Zhou HC, Coord. Chem. Rev., 293, 327 (2015)
  28. Rocca JD, Liu D, Lin W, Accounts Chem. Res., 44, 957 (2011)
  29. Liu Y, Ng Z, Khan EA, Jeong HK, Ching CB, Lai Z, Microporous Mesoporous Mater., 118, 296 (2009)
  30. Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477 (2009)
  31. Shekhah O, Wang H, Zacher D, Fischer RA, Woll C, Angew. Chem.-Int. Edit., 48, 5038 (2009)
  32. Shekhah O, Wang H, Paradinas M, Ocal C, Schupbach B, Terfort A, Zacher D, Fischer RA, Woll C, Nat. Mater., 8(6), 481 (2009)
  33. Liu XL, Li YS, Zhu GQ, Ban YJ, Xu LY, Yang WS, Angew. Chem.-Int. Edit., 123, 10824 (2011)
  34. Zhang F, Zou X, Feng W, Zhao X, Jing X, Sun F, Ren H, Zhu G, J. Mater. Chem., 22, 25019 (2012)
  35. Schoedel A, Scherb C, Bein T, Angew. Chem.-Int. Edit., 122, 7383 (2010)
  36. Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R, Nat. Mater., 15(3), 304 (2016)
  37. Van Assche TRC, Desmet G, Ameloot R, De Vos DE, Terryn H, Denayer JFM, Microporous Mesoporous Mater., 158, 209 (2012)
  38. Campagnol N, Van Assche TRC, Li M, Stappers L, Dinca M, et al., J. Mater. Chem. A., 4, 3914 (2016)
  39. Caddeo F, Vogt R, Weil D, Sigle W, Toimil-Molares ME, Maijenburg AW, ACS Appl. Mater. Interfaces., 11, 25378 (2019)
  40. Lestari WW, Nugraha RE, Winarni ID, Adreane M, Rahmawati F, AIP Conf. Proc., American Institute of Physics Inc., 020038 (2016).
  41. Li MY, Dinca M, J. Am. Chem. Soc., 133(33), 12926 (2011)
  42. Li M, Dinca M, Chem. Mater., 27, 3203 (2015)
  43. Tranchemontagne DJ, Tranchemontagne JL, O’keeffe M, Yaghi OM, Chem. Soc. Rev., 38, 1257 (2009)
  44. Long JR, Yaghi OM, Chem. Soc. Rev., 38, 1213 (2009)
  45. Li M, Dinca M, Chem. Sci., 5, 107 (2014)
  46. Zhao GY, Sun X, Zhang L, Chen X, Mao YC, Sun KN, J. Power Sources, 389, 8 (2018)
  47. Du JL, Zhang XY, Li CP, Gao JP, Hou JX, Jing X, Mu YJ, Li LJ, Sens. Actuators B-Chem., 257, 207 (2018)
  48. Wang L, Yao ZQ, Ren GJ, De Han S, Hu TL, Bu XH, Inorg. Chem. Commun., 65, 9 (2016)
  49. Pal S, Bharadwaj PK, Cryst. Growth Des., 16, 5852 (2016)
  50. Hu P, Zhu X, Luo X, Hu X, Ji L, Microchim. Acta, 187, 1 (2020)
  51. Arul P, Gowthaman NSK, John SA, Tominaga M, Electrochim. Acta, 354, 136673 (2020)
  52. Wang L, Wu Y, Cao R, Ren L, Chen M, Feng X, Zhou J, Wang B, ACS Appl. Mater. Interfaces., 8, 16736 (2016)
  53. Zhao J, Wang Y, Zhou J, Qi P, Li S, Zhang K, Feng X, Wang B, Hu C, J. Mater. Chem. A, 4, 7174 (2016)
  54. Jabarian S, Ghaffarinejad A, Kazemi H, Anal. Bioanal. Electrochem., 10, 1611 (2018)
  55. Cao W, Liu Y, Xu F, Li J, Li D, Du G, Chen N, J. Electrochem. Soc., 167, 050503 (2020)
  56. Campagnol N, Van Assche T, Boudewijns T, Denayer J, Binnemans K, De Vos D, Fransaer J, J. Mater. Chem. A, 1, 5827 (2013)
  57. Pirzadeh K, Ghoreyshi AA, Rahimnejad M, Mohammadi M, Korean J. Chem. Eng., 35(4), 974 (2018)
  58. Zhang F, Zhang TT, Zou XQ, Liang XQ, Zhu GS, Qu FY, Solid State Ion., 301, 125 (2017)
  59. Vehrenberg J, Vepsalainen M, Macedo DS, Rubio-Martinez M, Webster NAS, Wessling M, Microporous Mesoporous Mater., 303, 110218 (2020)
  60. Van Assche TRC, Campagnol N, Muselle T, Terryn H, Fransaer J, Denayer JFM, Microporous Mesoporous Mater., 224, 302 (2016)
  61. Jiang LL, Zeng X, Li M, Wang MQ, Su TY, Tian XC, Tang J, RSC Adv., 7, 9316 (2017)
  62. Pirzadeh K, Ghoreyshi AA, Rahimnejad M, Mohammadi M, Front. Chem. Sci. Eng., 14, 233 (2020)
  63. Saini K, Joseph F, Ramanan A, Bhatia SS, Mater. Today Proc., Elsevier Ltd., 9616-9621 (2017).
  64. Jabarian S, Ghaffarinejad A, J. Inorg. Organomet. Polym. Mater., 29, 1565 (2019)
  65. Khazalpour S, Safarifard V, Morsali A, Nematollahi D, RSC Adv., 5, 36547 (2015)
  66. Yang HM, Liu X, Song XL, Yang TL, Liang ZH, Fan CM, Trans. Nonferrous Met. Soc. China, 25, 3987 (2015)
  67. Wei R, Chi HY, Li X, Lu D, Wan Y, Yang CW, Lai Z, Adv. Funct. Mater., 30, 190708 (2020)