화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.12, 682-689, December, 2021
제1원리계산을 이용한 (Nb1-xTax)C, (Nb1-xHfx)C 초고온 세라믹 고용체의 구조 및 탄성특성
Structure and Elastic Properties of (Nb1-xTax)C, (Nb1-xHfx)C, Ultra-High Temperature Solid Solution Ceramics using the First Principles Calculation
E-mail:,
NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.
  1. Cheng T, J. European Ceram. Soc., 41, 2335 (2021)
  2. Vedel DV, Grigoriev ON, Mazur PV, Osipov AE, Powder Metall. Met. Ceram., 60, 60 (2021)
  3. Wang CR, Yang JM, Hoffman W, Mater. Chem. Phys., 74(3), 272 (2002)
  4. Vorotilo S, Sidnov K, Mosyagin IY, Khvan AV, Levashov EA, Patsera EI, Abrikosov IA, J. Alloy. Compd., 778, 480 (2019)
  5. Zhang J, Jiang J, Song Q, Pan T, Wu Z, Jia X, Wen Y, Ceram. Int., 47, 28050 (2021)
  6. Miaja-Avila L, Caplins BW, Chiaramonti AN, et al., J. Phys. Chem. C., 125, 2626 (2021).
  7. Kahl B, Berndt C, Ang ASM, Surf. Coat. Technol., 416, 127128 (2021)
  8. Sevy A, Matthew DJ, Morse MD, J. Chem. Phys., 149, 044306 (2018)
  9. Tan Y, Teng Z, Chen C, Jia P, Zhou X, Zhang H, Ceram. Int., 47, 16882 (2021)
  10. Woydt M, Huang S, Vleugels J, Mohrbacher H, Cannizza E, Int. J. Refract. Met. Hard Mater., 72, 380 (2018)
  11. Klocke F, Krieg T, CIRP Ann Manuf Technol, 48, 515 (1999)
  12. Kim J, Kim M, Roh KM, Kang I, J. Am. Ceram. Soc., 102(10), 6298 (2019)
  13. Wang H, Gao B, Chen X, Wang J, Chen S, Gou Y, Appl. Organomet. Chem., 27, 166 (2013)
  14. Yang J, Wang Y, Huang J, Wang W, Ye Z, Chen S, Zhao Y, J. Alloy. Compd., 755, 211 (2018)
  15. Wang HL, Wang CA, Yao XF, Fang DN, J. Am. Ceram. Soc., 90(7), 1992 (2007)
  16. Kurbatkina VV, Patsera EI, Loginov PA, et al., Ceram. Int., 47, 26205 (2021)
  17. Sheng SH, Zhang RF, Veprek S, Acta Mater., 56, 968 (2008)
  18. Yao HZ, Ouyang LZ, Ching WY, J. Am. Ceram. Soc., 90(10), 3194 (2007)
  19. Kim J, Suh YJ, Ceram. Int., 43, 12968 (2017)
  20. Furthmller J, Hafner J, Kresse G, Phys. Rev. B, 50, 15606 (1994)
  21. Grimme S, J. Comput. Chem., 27, 1787 (2006)
  22. Matveev A, Staufer M, Mayer M, Rosch N, Int J Quantum Chem., 75, 863 (1999)
  23. Walle AVD, Calphad., 33, 266 (2009)
  24. Walle AVD, Tiwary P, Jong MD, et al., Calphad., 42, 13 (2013)
  25. Connolly JWD, Williams AR, Phys. Rev. B, 27, 5169 (1983)
  26. Jones RM, AIAA J., 15, 16 (1977)
  27. Voigt W, 980 S. Reproduced 1966 Spring Fachmedien Wiesbaden GmbH, Leipzi, 980 (1928).
  28. Reuss A, Angew Z, Math. Mech., 9, 49 (1929)
  29. Hill R, Proc. Phys. Soc., 65, 349 (1952)
  30. Greaves GN, Greer AL, Lakes RS, Rouxel T, Nat. Mater., 10(11), 823 (2011)
  31. Lakes R, Science, 235, 1038 (1987)
  32. Tian Y, Xu B, Zhao Z, Int J Refract Hard Met., 33, 93 (2012)
  33. Ranganathan SI, Ostoja-Starzewski M, Phys. Rev. Lett., 101, 055504 (2008)
  34. Yoshiasa A, Tokuda M, Kitahara G, Unoki K, Isobe H, Nakatsuka A, Sugiyama K, J. Cryst. Growth, 574, 126327 (2021)
  35. Sautereau J, Mocellin A, J. Mater. Sci., 9, 761 (1974)
  36. Cedillos-Barraza O, Grasso S, Nasiri NA, Jayaseelan DD, Reece MJ, Lee WE, J. European Ceram. Soc., 36, 1539 (2016)
  37. Mouhat F, Coudert FX, Phys. Rev. B, 90, 224104 (2014)
  38. Vorotilo S, Sidnov K, Sedegov AS, Abedi M, Vorotilo K, Moskovskikh DO, Comput. Mater. Sci., 201, 110869 (2022)
  39. Kim J, Kang S, J. Alloy. Compd., 528, 20 (2012)
  40. Ghaffari SA, Faghihi-Sani MA, Golestani-Fard F, Mandal H, J. European Ceram. Soc., 33, 1479 (2013)
  41. Liu Y, Jiang Y, Zhou R, Feng J, J. Alloy. Compd., 582, 500 (2014)
  42. Haines J, Leger JM, Bocquillon G, Annual Reviews, 31, 1 (2001)