화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.12, 882-886, December, 2021
Thickness Effect of Polar Polymer Films on the Characteristics of Organic Memory Transistors
E-mail:
Organic memory transistors based on an organic field-effect transistor (OFET) structure were fabricated by employing a water-soluble polar polymer, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA). The thickness of PAMPSA films was varied from 180 nm to 1000 nm and thermally annealed (treated) at 170 ℃ for 30 min. The annealed PAMPSA films were optically transparent with naked eyes even though the absorbance at the wavelength range of ca. 190~260 nm gradually increased with the film thickness. The devices with the annealed PAMPSA films showed p-channel transistor characteristics at low operation voltages (0~-5 V) and delivered hysteresis of drain current due to the carbon radical-induced dipoles in the thermally annealed PAMPSA films. The best hysteresis characteristics were obtained at the film thickness of 450 nm, whereas the drain current was gradually decreased with the thickness of PAMPSA films. This result has been assigned to the trade-off effect between the capacitance decrease and the dipole increase the PAMPSA thickness increases. The optimized memory devices with the 450 nm-thick PAMPSA layers disclosed excellent retention characteristics during >10,000 cycles of writing-reading-erasing-reading memory tests.
  1. Chen WC, Electrical memory materials and devices, RSC Publishing, 2015.
  2. Shi X, Chen HY, Hao F, Liu RH, Wang T, Qiu PF, Burkhardt U, Grin Y, Chen LD, Nat. Mater., 17(5), 421 (2018)
  3. Tizno O, Marshall A, Fernandez-Delgado N, Herrera M, Molina S, Hayne M, Sci. Rep., 9, 8950 (2019)
  4. Yao X, Klyukin K, Lu W, Onen M, Ryu S, Kim D, Emond N, Waluyo I, Hunt A, Alamo J, Li J, Yildiz B, Nat. Commun., 11, 3134 (2020)
  5. Liang J, Jiang C, Wu W, Nanoscale, 11, 7041 (2019)
  6. Pandit B, Sankapal B, Koinkar P, Sci. Rep., 9, 5892 (2019)
  7. Kaczmarek KT, Ledingham PM, Brecht B, et al., Phys. Rev. A, 97, 042316 (2018)
  8. Zhong Tian, Kindem Jonathan M., Bartholomew John G., Rochman Jake, Craiciu Ioana, Miyazono Evan, Bettinelli Marco, Cavalli Enrico, Verma Varun, Nam Sae Woo, Marsili Francesco, Shaw Matthew D., Beyer Andrew D., Faraon Andrei, Science, 357(6358), 1392 (2017)
  9. Vernaz-Gris P, Huang K, Cao M, Sheremet A, Laurat J, Nat. Commun., 9, 363 (2018)
  10. Huang S, Liu Y, Jafari M, Siaj M, Wang H, Xiao S, Ma D, Adv. Funct. Mater., 31, 201002 (2021)
  11. Lai S, Temino I, Cramer T, Pozo F, Fraboni B, Cosseddu P, Bonfiglio A, Mas-Torrent M, Adv. Electron. Mater., 4, 170027 (2018)
  12. Che B, Zhou D, Li H, He C, Liu E, Lu X, Org. Electron., 66, 86 (2019)
  13. Jin Z, Chen Y, Zhou Q, Mao P, Liu H, Wang J, Li Y, Mater. Chem. Front., 1, 1338 (2017)
  14. Zhang P, Xu B, Gao C, Chen G, Gao M, ACS Appl. Mater. Interfaces, 8, 30336 (2016)
  15. Bhattacharjee S, Das U, Sarkar P, Roy A, Org. Electron., 58, 145 (2018)
  16. Lee C, Kim H, Kim Y, npj Flex. Electron., 5, 10 (2021)
  17. Lee C, Kim H, Kim Y, ACS Appl. Mater. Interfaces, 13, 16 (2021)
  18. Mondal S, Venkataraman V, Nat. Commun., 10, 2143 (2019)
  19. Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J, Adv. Mater., 29, 170042 (2017)
  20. Mondal S, Venkataraman V, Appl. Phys. Lett., 114, 173502 (2019)
  21. Lo C, Watanabe Y, Murakami D, Shih C, Nakabayashi K, Mori H, Chen W, Macromol. Rapid Commun., 40, 190011 (2019)
  22. Zheng C, Tong T, Hu Y, Gu Y, Wu H, Wu D, Meng H, Yi M, Ma J, Gao D, Huang W, Small, 14, 180075 (2018)
  23. Nam S, Ko YG, Hahm S, Park S, Seo J, Lee H, Kim H, Ree M, Kim Y, NPG Asia Mater., 5, e33 (2013)
  24. Lee SJ, Cho KG, Jung SH, Kim SW, Lee JK, Lee KH, Macromol. Res., 28(7), 683 (2020)
  25. Gunaydin O, Demir A, Demir GE, Yucedag I, Cosut B, Macromol. Res., 26(2), 164 (2018)
  26. Lee C, Jeong J, Kim H, Kim Y, J. Hazard. Mater., 374, 159 (2019)
  27. Nketia-Yawson B, Noh YY, Macromol. Res., 25(6), 489 (2017)
  28. Han H, Lee C, Kim H, Kim Y, Adv. Funct. Mater., 28, 180070 (2018)
  29. Leite GV, Van Etten EA, Forte MMC, Boudinov H, Synth. Met., 229, 33 (2017)
  30. Seo J, Nam S, Kim H, Anthopoulos TD, Bradley DDC, Kim Y, NPG Asia Mater., 8, e235 (2016)
  31. Sun Y, Lu J, Ai C, Wen D, Phys. Chem. Chem. Phys., 18, 11341 (2016)
  32. Lee C, Jeong J, Kim H, Kim Y, Mater. Horiz., 6, 1899 (2019)
  33. Hmar JJL, RSC Adv., 8, 20423 (2018)
  34. Seo J, Kim H, Lee C, Kim Y, Adv. Electron. Mater., 6, 190092 (2020)
  35. Lee C, Jeong J, Kim H, Kim Y, ACS Appl. Mater. Interfaces, 11, 48113 (2019)
  36. Chandrasekaran S, Simanjuntak FM, Aluguri R, Tseng TY, Thin Solid Films, 660, 777 (2018)
  37. Park T, Song S, Kim H, Kim S, Chung S, Kim B, Lee K, Kim K, Choi B, Hwang C, Sci. Rep., 5, 15965 (2015)
  38. Ling H, Li W, Li H, Yi M, Xie L, Wang L, Ma Y, Bao Y, Guo F, Huang W, Org. Electron., 43, 222 (2017)
  39. Park H, Roh J, Lee J, Hwang C, Adv. Mater., 31, 180526 (2019)
  40. Van Dyck C, Marks TJ, Ratner MA, ACS Nano, 11, 5970 (2017)
  41. Chiang Y, Huang C, Lin Y, Chiu Y, Isono T, Satoh T, Chen W, Adv. Mater., 32, 200263 (2020)
  42. Li Q, Li T, Zhang Y, Chen Z, Li Y, Jin L, Zhao H, Li J, Yao J, J. Phys. Chem. C, 124, 23343 (2020)