화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 317-327, February, 2022
Fundamental reaction kinetics of high-pressure reductive amination of polyalkylene glycol
E-mail:
This study investigates reaction kinetics of high-pressure amination of polyalkylene glycol (PAG) to polyetheramine (PEA). The reductive amination of PAG was carried out depending on the NH3 amount, reaction temperature, reaction pressure, and H2O content in a batch reactor to understand the effect of these factors on activity and selectivity toward the primary amine. Contrary to the fact that the amination step is a zero-order reaction and dehydrogenation of alcohol to ketone is the rate-limiting step in the reductive amination of alcohol, the amount of NH3 significantly affected the reaction rate. The increased amount of NH3 enhanced the activity and selectivity for PEA, in contrast with the results reported in prior studies. A Langmuir-Hinshelwood kinetic model was established to reflect the effect of the NH3 amount, and kinetic parameters such as the rate constant and activation energy were obtained at a high pressure around 150 bar. It was also found that the absence of NH3 caused the reverse reaction of PEA to the secondary amine in the presence of H2. The fundamental kinetic analysis provides a competitive synthesis route for improving the activity and selectivity toward the primary amine.
  1. Ramezanzadeh M, Ramezanzadeh B, Sari MG, Saeb MR, J. Ind. Eng. Chem., 82, 290 (2020)
  2. White BT, Migliore JM, Mapesa EU, Wolfgang JD, Sangoro J, Long TE, RSC Adv., 10(32), 18760 (2020)
  3. Pham CT, Nguyen BT, Nguyen MT, Nguyen TH, Hoang CN, Nguyen NN, et al., J. Ind. Eng. Chem., 93, 196 (2021)
  4. Kelland MA, Energy Fuels, 20(3), 825 (2006)
  5. Song JH, Couzis A, Lee JW, Langmuir, 26(23), 18119 (2010)
  6. Song JH, Couzis A, Lee JW, Langmuir, 26(12), 9187 (2010)
  7. Churro R, Mendes F, Ara?jo P, Madeira LM, Ribeiro F, J. Ind. Eng. Chem., 95, 190 (2021)
  8. Kirschtowski S, Jameel F, Stein M, Seidel-Morgenstern A, Hamel C, Chem. Eng. Sci., 230 (2020)
  9. K. Kim, D.W. Kang, Y. Choi, W. Kim, H. Lee, J.W. Lee, RSC Adv., 10(73), 45159 (2020)
  10. Sewell G, Connor CO, Van Steen E, Appl. Catal., 125, 99 (1995)
  11. Rausch AK, van Steen E, Roessner F, J. Catal., 253(1), 111 (2008)
  12. Kim K, Kang DW, Im HG, Choi Y, Lee JW, ACS Omega, 5(41), 26545 (2020)
  13. Guillena G, Ram?n DJ, Yus M, Chem. Rev., 110(3), 1611 (2010)
  14. Hamid MHSA, Allen CL, Lamb GW, Maxwell AC, Maytum HC, Watson AJA, et al.,, J. Am. Chem. Soc., 131(5), 1766 (2009)
  15. Shimizu KI, Catal. Sci. Technol., 5(3), 1412 (2015)
  16. Kim K, Choi Y, Lee H, Lee JW, Appl. Catal. A Gen., 568, 114 (2018)
  17. Baiker A, Monti D, Fan YS, J. Catal., 88(1), 81 (1984)
  18. Bassili VA, Baiker A, Appl. Catal., 70(1), 325 (1991)
  19. Dumon AS, Wang T, Ibanez J, Tomer A, Yan Z, Wischert R, et al., Catal. Sci. Technol., 8(2), 611 (2018)
  20. Ruiz D, Aho A, Saloranta T, Er?nen K, W?rna J, Leino R, et al., Chem. Eng. J., 307, 739 (2017)
  21. Buehring D, Gallas A, Glos M, Raab K, Scherl FX, Wachsen O, Polyetheramine production method. US Pat. US7696385 B2, 2015.
  22. Renken TL, Knifton JF, Catalytic process for the production of primary amines from oxyethylene glycol monoalkyl ethers. US Pat. US4618717, 1986.
  23. Li S, Wen M, Chen H, Ni Z, Xu J, Shen J, J. Catal., 350, 141 (2017)
  24. Veefkind VA, Lercher JA, Appl. Catal. A Gen., 181(2), 245 (1999)
  25. Zhang Y, Seitz WR, Grant CL, Sundberg DC, Anal. Chim, 217?227, (1989).
  26. S. Pimputkar, S. Nakamura, J. Supercrit. Fluids, 107
  27. Zhang JB, Huang K, J. Chem. Eng. Data, 65(1), 97 (2020)
  28. Wang T, Iba?ez J, Wang K, Fang L, Sabbe M, Michel C, et al., Nat. Catal., 2(9), 773 (2019)
  29. Cui X, Dai X, Deng Y, Shi F, Chem. - A Eur. J., 19(11), 3665 (2013)
  30. L?vay K, K?rp?ti T, Heged}us L, J. Ind. Eng. Chem., 101, 279 (2021)
  31. Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
  32. Arteaga-P?rez LE, Manrique R, Castillo-Puchi F, Ortega M, Bertiola C, P?rez A, Jim?nez R, et al., Chem. Eng. J., 417 (2021)
  33. Im H, Park J, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
  34. Ma Y, Gan J, Pan M, Zhang Y, Fu W, Duan X, et al., Chem. Eng. Sci., 203, 228 (2019)
  35. Yusuf A, Palmisano G, Chem. Eng. Sci., 229 (2021)
  36. Jeong YS, Woo Y, Park MJ, Shin CH, Catal. Today, 352, 287 (2020)
  37. Kim I, Itagaki S, Jin X, Yamaguchi K, Mizuno N, Catal. Sci. Technol., 3(9), 2397 (2013)
  38. Liu H, Chuah GK, Jaenicke S, J. Catal., 329, 262 (2015)
  39. Al-Hmoud L, Jones CW, J. Catal., 301, 116 (2013)
  40. ?ll AH, Samec JSM, Brasse C, Backvall JE, Chem. Commun., 10, 1144 (2002)
  41. Ha H, Ellison CJ, Korean J. Chem. Eng., 35(2), 303 (2018)
  42. Zhang J, Zhao Y, Akins DL, Lee JW, J. Phys. Chem. C, 114(45), 19529 (2010)
  43. Zhang J, Zhao Y, Akins DL, Lee JW, J. Phys. Chem. C, 115(16), 8386 (2011)