화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 382-392, February, 2022
Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells
E-mail:
The electron transport layer (ETL) plays an important role in high-efficiency perovskite solar cells (PSCs). TiO2 nanorod (TNR) thin film with outstanding photovoltaic properties is considered as an excellent ETL in the structure of PSCs. To enhance the efficiency of PSCs, ETL heterostructures with anatase TiO2 nanoparticles (TNPs) and rutile TNRs are fabricated and optimized by two-step hydrothermal process. The maximum efficiency of PSCs based on the ETLs of TiO2 heterostructures in this study is 14.143%, which is much higher than that of PSC cell with the ETL of pure TNRs (9.361%). Hypothesis: This study aims to prepare TiO2 heterostructures with two different polymorphic TiO2 (anatase TNPs and rutile TNRs) for high-performance PSCs. Experiments: TiO2 heterostructures are prepared on conductive FTO substrate by two-step hydrothermal process. Commercial TNPs (P25) are used in different heterostructures for comparison. The structural, morphological characteristics and the current.voltage properties of these ETLs are carefully investigated. Findings: The enhanced performance of TiO2 heterostructures-based PSCs is believed to be attributed to the excellent capability of carrier extraction, large surface area, light scattering effect and defect passivation at the ETL/perovskite interface.
  1. Denholm P, Drury E, Margolis R, Mehos M, Gener. Electr. a Carbon- Constrained World., 271?302. 10.1016/B978-1-85617-655-2.00010-9, (2010).
  2. Deolalkar SP, Des. Green Cem. Plants., 251?258, (2016).
  3. Belyakov N, Sustain. Power Gener., 417?438, (2019).
  4. Tripanagnostopoulos Y, Compr. Renew. Energy, 3, 255 (2012)
  5. Hagfeldt A, Cappel UB, Boschloo G, Sun L, Kloo L, Pettersson H, Gibson EA, Compr. Renew. Energy., 1, 481 (2012)
  6. Iftiquar SM, Lee Y, Ju M, Balaji N, Dhungel SK, Yi J, Photodiodes - From Fundam. to Appl., (2012).
  7. Chapin DM, Fuller CS, Pearson GL, Semicond. Devices Pioneer. Pap. 969?970, (1991).
  8. Sopian K, Cheow SL, Zaidi SH, AIP Conf. Proc., 1877 (2017)
  9. Nagar VK, Srivastava SK, Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., 4, 2321 (2016)
  10. Pizzini S, Sol. Energy Mater. Sol. Cells, 94, 1528 (2010)
  11. Kojima A, Teshima K, Shirai Y, Miyasaka T, J. Am. Chem. Soc., 131, 6050 (2009)
  12. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ, Science, 338(80), 643 (2012)
  13. Im JH, Chung J, Kim SJ, Park NG, Nanoscale Res. Lett. 2012 71. 7 (2012) 1?7. 10.1186/1556-276X-7-353.
  14. Huang X, Chen R, Deng G, Han F, Ruan P, Cheng F, Yin J, Wu B, Zheng N, Am. Chem. Soc., 142, 6149 (2020)
  15. Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Gr?tzel M, Kim JY, Nat. 2021 5927854. 592 (2021) 381?385. 10.1038/s41586- 021-03406-5.
  16. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ, Science, 342(80), 341 (2013)
  17. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzel M, White TJ, J. Mater. Chem. A., 1, 5628 (2013)
  18. Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S, Angew. Chemie Int. Ed., 53, 2812 (2014)
  19. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD, Science, , 347(80), 522 (2015)
  20. Wang Y, Rho WY, Yang HY, Mahmoudi T, Seo S, Lee DH, Hahn YB, Nano Energy, 27, 535 (2016)
  21. Wang Y, Mahmoudi T, Rho WY, Yang HY, Seo S, Bhat KS, Ahmad R, Hahn YB, Nano Energy, 40, 408 (2017)
  22. Wang Y, Mahmoudi T, Yang HY, Bhat KS, Yoo JY, Hahn YB, Nano Energy, 49, 59 (2018)
  23. Jin IS, Park SH, Kim KS, Jung JW, J. Alloys Compd., 847 (2020)
  24. Akman E, Shalan AE, Sadegh F, Akin S, ChemSusChem., 14, 1176 (2021)
  25. Shalan AE, Akman E, Sadegh F, Akin S, J. Phys. Chem. Lett., 12, 997 (2021)
  26. Mohammed MKA, Shalan AE, Dehghanipour M, Mohseni HR, Chem. Eng. J., 428 (2022)
  27. Yang G, Lei H, Tao H, Zheng X, Ma J, Liu Q, Ke W, Chen Z, Xiong L, Qin P, Chen Z, Qin M, Lu X, Yan Y, Fang G, Small, 13, 1601769 (2017)
  28. Ravishankar S, Gharibzadeh S, Rold?n-Carmona C, Grancini G, Lee Y, Ralaiarisoa M, Asiri AM, Koch N, Bisquert J, Nazeeruddin MK, Joule, 2, 788 (2018)
  29. Bi D, Moon SJ, H?ggman L, Boschloo G, Yang L, Johansson EMJ, Nazeeruddin MK, Gratzel M, Hagfeldt A, RSC Adv., 3, 18762 (2013)
  30. Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng YB, Spiccia L, Angew. Chemie Int. Ed., 53, 9898 (2014)
  31. Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Gratzel M, Science, 358(80), 768 (2017)
  32. Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M, Science, 354(80), 206 (2016)
  33. Qiu Q, Li S, Jiang J, Wang D, Lin Y, Xie T, J. Phys. Chem. C, 121, 21560 (2017)
  34. Qin P, Paulose M, Dar MI, Moehl T, Arora N, Gao P, Varghese OK, Gratzel M, Nazeeruddin MK, Small, 11, 5533 (2015)
  35. Lin SH, Su YH, Cho HW, Kung PY, Liao WP, Wu JJ, J. Mater. Chem. A., 4, 1119 (2016)
  36. Im JH, Luo J, Franckevicius M, Pellet N, Gao P, Moehl T, Zakeeruddin SM, Nazeeruddin MK, Gratzel M, Park NG, Nano Lett., 15, 2120 (2015)
  37. Elseman AM, Zaki AH, Shalan AE, Rashad MM, Song QL, Ind. Eng. Chem. Res., 59, 18549 (2020)
  38. Qu J, Lai C, J. Nanomater., 2013 (2013)