화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.1, 56-61, January, 2022
재생 ABS/재생 PETG 블렌드의 물성에 미치는 고강도 초음파의 영향
Effects of High Intensity Ultrasound on the Propertiesof Recycled ABS/Recycled PETG Blends
E-mail:
초록
재생 acrylonitrile butadiene styrene copolymer(ABS)와 재생 polyethylene terephthalate glycol-modified (PETG)의 블렌드에 초음파가 미치는 영향을 조사하였다. 초음파 가진 장치가 장착된 용융 혼련기를 이용하여 재생 ABS/재생 PETG(50/50) 블렌드를 준비하였고 열적, 기계적 물성 및 미세구조를 시차주사열량계(DSC), 만능시험기(UTM), 주사전자현미경(SEM), 원자간격현미경(AFM), 감쇠전반사(ATR)를 이용하여 살펴보았다. 초음파를 가진한 블렌드의 물성은 초음파 가진 시간에 따라 변하였는데 초음파를 15초간 가진했을 때에도 인장강도의 뚜렷한 증가를 보였다. 이는 초음파로 인해 생성된 재생 ABS와 재생 PETG의 공중합체가 계면 접착력을 향상시켰기 때문이라고 판단되었다.
The effect of ultrasound on the blend of recycled acrylonitrile butadiene styrene copolymer (ABS) and recycled polyethylene terephthalate glycol-modified (PETG) was investigated. The r-ABS/r-PETG (50/50) blend was prepared using a melt mixer equipped with an ultrasonic device, and the thermal and mechanical properties and the morphology were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), scanning electron microscope (SEM), atomic force microscopy (AFM), and attenuated total reflection (ATR). The properties of the sonicated blends were changed according to the sonication time. The tensile strength distinctly increased even when the ultrasonic wave was irradiated for 15 seconds. This increase is thought to be due to the improved interfacial adhesion by the copolymer of recycled ABS and recycled PETG generated by sonication.
  1. Sikdar S, Clean Technol. Environ. Policy., 22, 1431 (2020)
  2. Kim DH, Lee M, Goh M, ACS Sustainable Chem. Eng., 8, 2433 (2020)
  3. Somers MJ, Alfaro JF, Lewis GM, J. Clean Prod., 313, 127686 (2021)
  4. Eriksen MK, Pivenko K, Olsson ME, Astrup TF, Waste Manage., 79, 595 (2018)
  5. Liang R, Polymer Composite II 2001; CRC Press: New York, pp 11, 2002.
  6. Hirayama D, Saron C, Polymer, 135, 271 (2018)
  7. Muthuraj R, Misra M, Mohanty AK, Appl. Polym., 135, 45726 (2018)
  8. Quiles-Carrillo L, Montanes N, Lagaron JM, Balart R, Torres-Giner S, J. Polym. Environ., 27, 84 (2019)
  9. Yang X, Wang HT, Chen JL, Fu ZA, Zhao XW, Li YJ, Polymer, 177, 139 (2019)
  10. Chung KM, Kim HS, Korea-Aust. Rheol. J., 30(4), 309 (2018)
  11. Sanaeishoar H, Sabbaghan M, Argyropoulos DS, Carbohydr. Polym., 181, 1071 (2018)
  12. Wu S, Polym. Eng. Sci., 27, 336 (1987)
  13. Liebscher M, Tzounis L, Potschke P, Heinrich G, Polymer, 54(25), 6801 (2013)
  14. Utracki LA, Polymer Blends and Alloys; Hanser Pub Inc, 1990.
  15. Li J, Guo S, Slezak R, Hausnerova B, Macromol. Chem. Phys., 206, 2429 (2005)
  16. Lee S, Lee JW, Characterization of Polymer Blends, Wiley-VCH, Weinheim, pp269, 2015.
  17. Kim H, Lee H, Lee JW, Korea-Aust. Rheol. J., 19(1), 1 (2007)
  18. Lee YS, Char KH, Macromolecules, 27(9), 2603 (1994)
  19. Piirma I, Polymeric Surfactants; Marcel Dekker: New York, 1992.
  20. Plochocki AP, Dagli SS, Andrews RD, Polym. Eng. Sci., 30, 741 (1990)
  21. Feng WL, Isayev AI, Polymer, 45(4), 1207 (2004)
  22. Oh JS, Isayev AI, Rogunova MA, Polymer, 44(8), 2337 (2003)
  23. Ferreira AC, Diniz MF, Mattos EC, Polimeros, 28, 6 (2018)
  24. Paszkiewicz S, Szymczyk A, Pawlikowska D, et al., RSC Adv., 7, 41745 (2017)