화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.1, 62-67, January, 2022
LED 청색광 차단용 콘택트렌즈에 관한 연구
Study on Contact Lens That Blocks Blue Light from LED
E-mail:,
초록
본 연구는 사람의 안구에 황반변성과 망막 손상을 일으키는 LED digital 기기의 청색광을 차단하는 콘택트렌즈를 개발하여 효과적으로 안구보호와 황반변성 발병률을 줄이기 위하여 시도하였다. 청색광 차단재와 콘택트렌즈용 재료는 각각 coumarin과 poly-methyl-methacrylate(PMMA)이다. PMMA 용해 유기용매로 dichloromethane, chloroform, ethyl acetate, acetone, toluene을 사용하였고 이중 toluene으로 녹였을 때, 시각적인 투명도가 가장 높았고, 강도 또한 가장 높았다. 제작한 렌즈 시편의 coumarin 농도별 흡광도 측정을 통해 청색광 차단율을 확인하였다. 제작한 coumarin/PMMA 콘택트렌즈 시편의 경우 coumarin의 혼합비율에 따라 1, 2.5, 5, 10 mM에 걸쳐 325 nm(UV-A) 영역에서는 99% 이상의 가장 높은 차단율을 보였고, 375 nm 영역에서는 1 mM일 때 5.69%, 2.5 mM은 43.34%, 5 mM은 56.45%, 10 mM은 66.25%의 결과를 보였다. 이는 청색광 차단을 위한 coumarin/PMMA 콘택트렌즈가 효과적으로 청색광을 차단하여 자연광 수준으로 낮출 수 있는 것을 알 수 있었다.
This study is focused on a contact lens for shielding blue light emitted from LED digital devices, preventing macular degeneration as well as an effective protection of human eyes. For the blue light blocking lens, coumarin was used as blue light blocking material and polymethylmethacrylate (PMMA) was engaged as a material for contact lens. As a solvent for PMMA, dichloromethane, chloroform, ethyl acetate, acetone, and toluene were used and tested. Among the solvents, toluene showed the highest transparency and strength/solidity. For blue light shielding rate, coumarin was administrated with different concentration to the PMMA film, then light absorbance was measured for each specimen. In results, coumarin/PMMA films (contact lens) within 325 nm (UV-A) region, all specimens, 1 mM, 2.5 mM, 5 mM, and 10 mM of coumarin contents PMMA films, showed 99% of blue light shielding rate. In case of 375 nm region, each specimen showed shielding blue light as 5.69% at 1 mM, 43.34% at 2.5 mM, 56.45% at 5 mM, and 66.25% at 10 mM. Conclusively, PMMA contact lenses with coumarin contents reduced the intensity of blue light generated by LED digital devices to the level of natural light.
  1. Heo JY, Kim K, Fava M, et al., J. Psychiatr. Res., 87, 61 (2017)
  2. Park SI, J. Korean Ophthalmic Opt. Soc., 17, 91 (2012)
  3. Jung MH, Yang SJ, Yuk JS, Oh SY, Kim CJ, Lyu J, Choi EJ, J. Korean Ophthalmic Opt. Soc., 20, 293 (2015)
  4. Kirk Smick OD, Villette T, Blue light hazard; REPORT OF A ROUNDTABLE: New York City, 2013.
  5. Yu YG, Choi EJ, J. Korean Ophthalmic Opt. Soc., 18, 297 (2013)
  6. Park SI, Jang YP, Ophthalmic Res., 57, 118 (2017)
  7. Lee JY, Yun EJ, Kim SM, Hwang HK, Park GJ, J. Korean Ophthalmic Opt. Soc., 18, 473 (2013)
  8. Cajal S R, Leiros W, Santiago Ramon y Cajal. Prames. 2011.
  9. Yonekawa Y, Miller JW, Kim IK, J. Clin. Med., 4, 343 (2015)
  10. Britton G, Liaaen-Jensen S, Pfander H, Carotenoids: Volume 5: Nutrition and Health; Birkhauser Basel: Basel, 2009.
  11. Cho JH, Preparation and Characterization of Biomedical Hybrid Material Using PMMA. Master's thesis, University of Inha, 2008.
  12. Son EH, Lim JS, Lee SJ, Hwang SJ, Lee EC, Kim SS, Biomaterials Res., 9, 138 (2005)
  13. Coumarin, National Center for Biotechnology Information, PubChem Compound Summary for CID 323.
  14. Moreddu R, Vigolo D, Yetisen AK, Adv. Healthc. Mater., 8, 190036 (2019)
  15. Park SH, Lee YI, Jeon IC, Korean J. Vis. Sci., 21, 509 (2019)
  16. Yu DS, Moon BY, Kim DH, Paik SM, J. Korean Ophthalmic Opt. Soc., 12, 37 (2007)
  17. Kienhuis AS, Wortelboer JM, Hoflack JC, et al., Drug Metab.d Dispos., 34, 2083 (2006)
  18. Daniel CH, Exploring Chemical Analysis Second Edition; Free Academy: New York, pp385, 2004.
  19. Cappitelli F, Principi P, Sorlini C, Trends Biotechnol., 24, 350 (2006)
  20. Lin M, Wang H, Meng S, Zhong W, Li Z, Cai R, Chen Z, Zhou X, Du Q, J. Pharm. Sci., 96, 1518 (2007)
  21. Kim AK, J. KSME, 34, 384 (1994)
  22. Park MC, J. Korean Ophthalmic Opt. Soc., 24, 301 (2009)
  23. Mainster MA, The British Journal of Ophthalmology, 90, 784 2006.
  24. Ali U, Karim KJBA, Buang NA, Polymer Reviews, 55, 678 (2015)