Applied Chemistry for Engineering, Vol.33, No.1, 58-63, February, 2022
비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석
Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite
E-mail:
초록
흑연은 낮은 탈/리튬화 전압, 372 mAh/g의 높은 이론 용량, 낮은 가격 및 긴 수명 특성을 가져 지난 30년 동안 리튬이 온전지 음극 재료로 활용되었다. 최근 무기 고체 재료로 구성되어 높은 안정성을 가지는 전고체 리튬이온전지는 전기 자동차 및 차세대 에너지 저장 장치로 엄청난 주목을 받고 있지만, 전고체 리튬이온전지 시스템에 잘 구동되는 흑연 연구는 부족한 실정이다. 그래서 우리는 탄소재료 표면에 존재하여 저항층으로 작용하는 비정질 탄소를 흑연으로부터 제거하여 흑연의 전기전도도 향상을 통해 황화물계 전고체 전지 음극 흑연 재료의 성능 향상을 유도했다. 400, 500 및 600 °C 공기 열처리된 흑연의 X-ray diffraction (XRD) 분석 결과, (002) 피크 반치폭(FWHM)이 bare 흑연보다 줄어들어 열처리 후 흑연의 결정성이 향상됨을 보였다. 또한 열처리 후 흑연의 결정성이 증가할수록 방전 용량, 초기 쿨롱효율(ICE) 및 수명 특성이 증가함을 확인했다. 500 °C 공기 열처리 한 흑연의 경우 331.1 mAh/g 및 ICE 86.2%와 10사이클 수명 측정 후 92.7%의 높은 용량 유지율을 나타내었다.
Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 °C, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 °C, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Armand M, Tarascon JM, Nature, 451, 652 (2008)
- Janek J, Zeier WG, Nat. Energy, 1, 1 (2016)
- Zhang W, Weber DA, Weigand H, et al., ACS Appl. Mater. Interfaces, 9, 17835 (2017)
- Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M, J. Power Sources, 146(1-2), 711 (2005)
- Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S, J. Process Control, 382, 176 (2018)
- Andre D, Hain H, Lamp P, Maglia F, Stiaszny B, J. Mater. Chem. A, 5, 17174 (2017)
- Takada K, Inada T, Kajiyama A, Sasaki H, Kondo S, Watanabe M, Murayama M, Kanno R, Solid State Ion., 158(3-4), 269 (2003)
- Seino Y, Takada K, Kim BC, Zhang LQ, Ohta N, Wada H, Osada M, Sasaki T, Solid State Ion., 176(31-34), 2389 (2005)
- Kuratani K, Sakuda A, Takeuchi T, Kobayashi H, ACS Appl. Energy Mater., 3, 5472 (2020)
- Maresca G, Tsurumaki A, Suzuki N, Tsujimura T, Aihara Y, Navarra MA, ChemElectroChem, 8, 689 (2021)
- Choi JH, Lee J, Moon SM, Kim YT, Park H, Lee CY, J. Phys. Chem. Lett., 7, 4739 (2016)
- Zhou W, Ikuhara Y, Zhao W, Tang J, Carbon, 33, 1177 (1995)
- Spitalsky Z, Krontiras CA, Georga SN, Galiotis C, Compos. Part A Appl. Sci., 40, 778 (2009)
- Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D, Sustain. Energy Fuels, 4, 5387 (2020)
- Peled E, Menachem C, Bartow D, Melman A, J. Electrochem. Soc., 143(1), L4 (1996)
- Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M, J. Power Sources, 200, 83 (2012)
- Park SW, Oh G, Park JW, Ha YC, Lee SM, Yoon SY, Kim BG, Small, 15, 190023 (2019)
- Siburian R, Sihotang H, Raja SL, Supeno M, Simanjuntak C, Orient. J. Chem., 34, 182 (2018)
- Albetran HM, Preprints, 2020080325 (2020).
- Shin J, Ryu WH, Park KS, Kim ID, ACS Nano, 7, 7330 (2013)
- Moss PL, Au G, Plichta EJ, Zheng JP, J. Electrochem. Soc., 155(12), A986 (2008)
- Islam J, Shao H, Badal MMR, Razeeb KM, Jamal M, PloS one, 16, e02481 (2021)
- Watson V, Yeboah Y, Weatherspoon M, Zheng J, Kalu EE, Int. J. Electrochem. Sci., 13, 7968 (2018)
- Landesfeind J, Eldiven A, Gasteiger HA, J. Electrochem. Soc., 165(5), A1122 (2018)
- Ni SB, Lv XH, Zhang JC, Ma JJ, Yang XL, Zhang LL, Electrochim. Acta, 145, 327 (2014)
- Son Y, Lee T, Wen B, Ma J, Jo C, Cho YG, Boies A, Cho J, De Volder M, Energy Environ. Sci., 13, 3723 (2020)