Journal of Industrial and Engineering Chemistry, Vol.107, 126-136, March, 2022
Facile synthesis of boron and nitrogen doped TiO2 as effective catalysts for photocatalytic degradation of emerging micro-pollutants
E-mail:
The development of photocatalysts for efficient photodegradation of emerging water pollutants is a subject of global concern in recent years. In this study, the photophysical properties of TiO2 were modified by doping with different concentrations of boron (B-TiO2) and nitrogen (N-TiO2) by following a sol–gel route of synthesis. The type and concentration of dopants were optimized to achieve maximum degradation of acetaminophen (ACT) and monocrotophos (MCP) in aqueous solutions. UV DRS analysis shows that the bandgap of TiO2 (3.2 eV) reduced up to 2.96 and 2.27 eV in B-TiO2 and N-TiO2 samples, respectively. The presence of dopants inside the crystal lattice of doped TiO2 was confirmed with X-ray diffraction (XRD), Micro Raman, Fourier Transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The XRD data confirmed that the presence of these dopants promotes the rutile phase transformation in TiO2 to various extents. The doping of B decreased the surface area and pore volume of TiO2, whereas N doping had increased these properties. The XPS spectra showed the formation of Ti-O-B and Ti-O-N type linkage, indicating the presence of interstitial B and substitutional N atoms in TiO2 crystal lattice. The B doped samples exhibit more enhancement in photodegradation efficiency as compared to N doped samples. Under optimized conditions, 5% B-TiO2 showed 95% and 71% degradation of ACT and MCP, respectively. The degradation pathway for both ACT and MCP involving their intermediates was discussed through Mass spectrometry analysis. The cost-effectiveness of the most efficient doped catalysts and commercial catalysts were compared with the ACER tool and turnover frequency.
Keywords:Water treatment;Emerging micro-pollutants;Material modification;Photocatalysis;Band-gap;Doping
- Tang Y, Yin M, Yang W, Li H, Zhong Y, Mo L et al., Water Environ. Res., 91(10), 984 (2019)
- Ben W, Zhu B, Yuan X, Zhang Y, Yang M, Qiang Z, Water Res., 130, 38 (2018)
- Soler P, Sole M, Ban?n R, Garcia-Galea E, Durfort M, Matamoros V et al., Fish Physiol. Biochem., 46(1), 247 (2020)
- Eggen RI, Hollender J, Joss A, Scharer M, Stamm C, Environ. Sci. Technol., 48(14), 7683 (2014)
- Czajka M, Matysiak-Kucharek M, Jodlowska-Jedrych B, Sawicki K, Fal B, Drop B et al., Environ. Res., 178, 108685 (2019)
- Pe?a A, Delgado-Moreno L, Rodriguez-Liebana JA, Sci. Total Environ., 718, 134468 (2020)
- Lecoeur M, Rabenirina G, Schifano N, Odou P, Ethgen S, Lebuffe G et al., Talanta, 205, 120108 (2019)
- Biel-Maeso M, Corada-Fernandez C, Lara-Martin PA, Environ. Pollut., 235, 312 (2018)
- Ternes TA, Water Res., 32, 3245 (1998)
- Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB et al., Environ. Sci. Technol., 36, 1202 (2002)
- Roberts P, Thomas K, Sci. Total Environ., 356(44564), 143 (2006)
- Weng M, Pei M, Desalination, 399, 21 (2016)
- Zhang Y, Sivakumar M, Yang S, Enever K, Ramezanianpour M, Desalination, 428, 116 (2018)
- Chen S, Yu J, Wang H, Yu H, Quan X, Desalination, 363, 37 (2015)
- Debabrata P, Sivakumar M, Chemosphere, 204, 101 (2018)
- Ismail M, Murtaza S, Hasan MK, William JC, J. Anal. Bioanal. Tech. 5:1, 2014.
- Gomes J, Joao L, Eva D, Rosa M, Quinta F, Rui CM, Water, 2019, 11(373) (1)
- Jitan SA, Palmisano G, Garlisi C, Catalysts, 10(2), 227 (2020)
- Anis SF, Hashaikeh R, Hilal N, Desalination, 468, 114077 (2019)
- Yadav V, Verma P, Sharma H, Tripathy S, Saini VK, Environ. Sci. Pollut. Res., 27(10), 10966 (2020)
- Nasirian M, Lin YP, Bustillo-Lecompte CF, Mehrvar M, Int. J. Environ. Sci. Technol., 15(9), 2009 (2018)
- Ellappan P, Miranda LR, Int. J. Photoenergy; Article Id 756408 : 9 pages, 2014.
- Sonmezoglu S, Banu E, Iskender A, Bull. Mat. Sci., 36(7), 1239 (2014)
- Ananpattarachai J, Kajitvichyanukul P, Seraphin S, J. Hazard. Mater., 168(1), 253 (2009)
- Eraiah RK, Madras G, J. Sol-Gel Sci. Technol., 71(2), 193 (2014)
- Chen D, Yang D, Wang Q, Jiang Z, Ind. Eng. Chem. Res., 45(12), 4110 (2006)
- Motoki I, Keiji Y, Tsutomu K, Hisanobu W, Appl. Catal. A: Gen., 455, 86 (2013)
- Yu T, Tan X, Zhao L, Yin Y, Chen P, Wei, J. Chem. Eng. Jpn., 157(1), 86 (2010)
- Saliby IE, Erdei L, Shon HK, Kim JH, J. Ind. Eng. Chem., 17(2), 358 (2011)
- Sing KSW, Everet DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J et al., Pure Appl. Chem., 57, 603 (1985)
- Zhang WF, He YL, Zhang MS, Yin Z, Chen Q, J. Phys. D-Appl. Phys., 33(8), 912 (2000)
- Quesada-Gonzalez M, Baba K, Sotelo-Vazquez C, Choquet P, Carmalt CJ, Parkin IP et al., J. Mater. Chem. A, 5(22), 10836 (2017)
- Wang J, Zhu W, Zhang Y, Liu S, J. Phys. Chem. C, 111(2), 1010 (2007)
- Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH, Appl. Catal. A: Gen., 285(44563), 181 (2005)
- Chen SS, His HC, Nian SH, Chiu CH, Appl. Catal. B: Environ., 160-161, 558 (2014)
- Nolan NT, Synnott DW, Seery MK, Hinder SJ, Van Wassenhoven A, Pillai SC, J. Hazard. Mater., 211-212, 88 (2012)
- Sharma G, Singh K, Priya M, Mohan S, Singh H, Bindra S, Radiat. Phys. Chem., 2006(75), 959 (2006)
- Tauc J, Mater. Res. Bull., 5(8), 721 (1970)
- Serpone N, J. Phys. Chem. B, 110(48), 24287 (2006)
- Zhang YG, Ma LL, Li JL, Yu Y, Environ. Sci. Technol., 41, 6264 (2007)
- Xiong LB, Li JL, Yang B, Yu Y, J. Nanomater. Article ID 831524, 13, 2012.
- Zaleska A, Grabowska E, Sobczak JW, Gazda M, Hupka J, Appl. Catal. B: Environ., 89(44624), 469 (2009)
- Yadav V, Sharma S, Saini VK, Ceram. Int., 46, 27308 (2020)
- Sathish M, Viswanathan B, Viswanath RP, Gopinath CS, Chem. Mater., 17(25), 6349 (2005)
- Cong YE, Zhang J, Chen F, Anpo M, He D, J. Phys. Chem. C, 111(28), 10618 (2007)
- Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D, Appl. Catal. B: Environ., 144, 369 (2014)
- Wahab HS, Hussain AA, J. Nanostruct. Chem., 6(3), 261 (2016)
- Gotostos MJN, Su CC, De luna MDG, Lu MC, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 49(8), 892 (2014)
- Zhang W, Gao Y, Qin Y, Wang M, Wu J, Li G et al., Environ. Pollut., 247, 362 (2019)
- Li Y, Ma G, Peng S, Lu G, Li S, Appl. Surf. Sci., 254(21), 6831 (2008)
- Wu YM, Xing MY, Zhang JL, Chen F, Appl. Catal. B: Environ., 97(44563), 182 (2010)
- Dalida MLP, Amer KMS, Su CC, Lu MC, Environ. Sci. Pollut. Res., 21(2), 1208 (2014)
- Jallouli N, Elghniji K, Trabelsi H, Ksibi M, Arab. J. Chem., 10, S3640 (2017)
- Basha S, Keane D, Nolan K, Oelgem?ller M, Lawler J, Tobin JM et al., Environ. Sci. Pollut. Res., 22(3), 2219 (2015)
- Rimoldi L, Meroni D, Falletta E, Pifferi V, Falciola L, Cappelletti G et al., Photochem. Photobiol. Sci., 16(1), 60 (2017)
- Silva WLD, Lansarin MA, Santos JHZD, Silveira F, Water Sci. Technol., 74(10), 2370 (2016)
- Sraw A, Kaur T, Pandey Y, Verma A, Sobti A, Wanchoo RK et al., Int. J. Environ. Sci. Tech., 17, 4895 (2020)
- Sivagami K, Krishna R, Swaminathan T, J. Water Sustain., 1, 75 (2011)
- Hanh NT, Tri NLM, Thuan DV, Tung MHT, Pham TD, Minh TD, Trang HT, Binh MH, Nguyen MV, J. Photochem. Photobiol. A-Chem., 382, 111923 (2019)
- Sraw A, Wanchoo RK, Toor AP, Environ. Prog. Sust. Energy., 33(4), 1201 (2014)
- Zheng L, Xu H, Pi F, Zhang Y, Sun X, RSC Adv., 6(90), 87273 (2016)
- Madhavan J, Kumar PSS, Anandan S, Grieser F, Ashokkumar M, J. Hazard. Mater., 177(44564), 944 (2010)
- Nabil J, Kais E, Hassen T, Mohamed K, Arab. J. Chem., 10, S3640 (2017)
- Wang L, Bian Z, Chemosphere, 239, 124815 (2020)
- Boardman AE, Greenberg DH, Vining AR, Weimer DL, Cost-benefitanalysis: concepts and practice, 3rd ed., Pearson Education, New Jersey, NJ,USA, 2006.
- Verbruggen SW, Tytgat T, Passel SV, Martens JA, Lenaerts S, ChemicalPapers, 2014.
- Compernolle T, Van Passel S, Weyens N, Vangronsveld J, Lebbe L., Thewys T, Int. J. Phytoremed., 14, 861 (2012)
- Compernolle T, Van Passel S, Weyens N, Vangronsveld J, Lebbe L, Thewys T, Int. J. Phytoremed., 14, 861 (2012)