화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 383-390, March, 2022
Composite electrolyte pastes for preparing sub-module dye sensitized solar cells
E-mail:
In this study, high-efficiency sub-module quasi-solid-state (QS) dye-sensitized solar cells (DSSCs) are prepared using silicon dioxide (SiO2) nanofiller and polyethylene oxide (PEO)-based iodide composite electrolyte pastes. The influence of various amounts of nanofiller on the ionic conductivity, ion diffusion coefficient, and the performance of the devices are explored. The addition of SiO2 decreases the ion transport properties in the plain polymer electrolyte pastes. X-ray photoelectron spectroscopy analysis confirms the adsorption of polyiodide and lithium ions on the surface of the SiO2. This effect causes a reduction in the concentration of ions near the photoelectrode. As a result, the QS-DSSCs using 1 wt.% SiO2 nanofillers have higher recombination resistance and a longer electron lifetime than the other DSSCs. Therefore, high open-circuit voltage (0.794 V) and high efficiency (8.83%) are obtained for the corresponding QS-DSSCs. This efficiency is much better than the efficiencies of the devices employing the pristine polymer electrolyte paste and liquid electrolytes. This composite electrolyte paste is employed to prepare QS-sub-module cells. The four strip and rectangular-shaped module cells have high efficiencies of 4.71% and 4.81%, respectively. QS-DSSCs using 1 wt.% SiO2 nanofillers show high stability at both room temperature and 60 °C.
  1. Lior N, Energy resources and use: The present situation, possible sustainable paths to the future, and the thermodynamic perspective, in: Thermodyn. Destr. Resour., pp. 212-232, 2011.
  2. Holdren JP, Science, 319, 424 (2008)
  3. Lewis NS, Science, 315, 798 (2007)
  4. Barnham KWJ, Mazzer M, Clive B, Nat. Mater., 5, 161 (2006)
  5. Roy JN, Solar photovoltaic technology, in: Green Energy Technol., pp. 21-56, 2018.
  6. Lee TD, Ebong AU, Renew. Sust. Energ. Rev., 70, 1286 (2017)
  7. Gong J, Sumathy K, Qiao Q, Zhou Z, Renew. Sust. Energ. Rev., 68, 234 (2017)
  8. O'Regan B, Gratzel M, Nature, 353, 737 (1991)
  9. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa JI, Hanaya M, Chem. Commun., 51, 15894 (2015)
  10. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Gratzel M, Nat. Chem., 6, 242 (2014)
  11. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M, Science, 334, 629 (2011)
  12. Durrant JR, Haque SA, Nat. Mater., 2, 362 (2003)
  13. Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Gratzel M, Nat. Mater., 7, 626 (2008)
  14. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Gratzel M, J. Am. Chem. Soc., 131, 558 (2009)
  15. Ni Y, Jin Z, Fu Y, J. Am. Ceram. Soc., 90, 2966 (2007)
  16. Decoppet JD, Moehl T, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Zakeeruddin SM, Schmidt HW, Gratzel M, J. Mater. Chem. A., 2, 15972 (2014)
  17. Weisspfennig CT, Hollman DJ, Menelaou C, Stranks SD, Joyce HJ, Johnston MB, Snaith HJ, Herz LM, Adv. Funct. Mater., 24, 668 (2014)
  18. Nogueira AF, Longo C, De Paoli MA, Coord. Chem. Rev., 248, 1455 (2004)
  19. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Chem. Rev., 115, 2136 (2015)
  20. De Freitas JN, Nogueira AF, De Paoli MA, J. Mater. Chem., 19, 5279 (2009)
  21. Yuan S, Tang Q, He B, Yang P, J. Power Sources, 254, 98 (2014)
  22. Lee KS, Jun Y, Park JH, Nano Lett., 12, 2233 (2012)
  23. Chen CL, Teng H, Lee YL, Adv. Mater., 23, 4199 (2011)
  24. Vijayakumar E, Subramania A, Fei Z, Dyson PJ, J. Appl. Polym. Sci., 132 (2015)
  25. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR, Electrochim. Acta, 130, 76 (2014)
  26. Venkatesan S, Su SC, Hung WN, Liu IP, Teng H, Lee YL, J. Power Sources, 298, 385 (2015)
  27. Liu IP, Hung WN, Teng H, Venkatesan S, Lin JC, Lee YL, J. Mater. Chem. A, 5, 9190 (2017)
  28. Wang C, Wang L, Shi Y, Zhang H, Ma T, Electrochim. Acta, 91, 302 (2013)
  29. Venkatesan S, Liu IP, Lin JC, Tsai MH, Teng H, Lee YL, J. Mater. Chem. A, 6, 10085 (2018)
  30. Venkatesan S, Liu IP, Hung WN, Teng H, Lee YL, Chem. Eng. J., 367, 17 (2019)
  31. Venkatesan S, Lee YL, Coord. Chem. Rev., 353, 58 (2017)
  32. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M, J. Am. Chem. Soc., 125, 1166 (2003)
  33. Wang H, Li H, Xue B, Wang Z, Meng Q, Chen L, J. Am. Chem. Soc., 127, 6394 (2005)
  34. Stergiopoulos T, Bidikoudi M, Likodimos V, Falaras P, J. Mater. Chem., 22, 24430 (2012)
  35. Lee KM, Suryanarayanan V, Ho KC, J. Power Sources, 185, 1605 (2008)
  36. Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K, Electrochim. Acta, 220, 573 (2016)
  37. Mohan VM, Murakami K, Kono A, Shimomura M, J. Mater. Chem. A, 1, 7399 (2013)
  38. Zhao XG, Jin EM, Park JY, Gu HB, Compos. Sci. Technol., 103, 100 (2014)
  39. Yoon IN, Song HK, Won J, Kang YS, J. Phys. Chem. C, 118, 3918 (2014)
  40. Yang CC, Wey JY, Liou TH, Li YJ, Shih JY, Mater. Chem. Phys., 132, 431 (2012)
  41. Venkatesan S, Liu IP, Shan CMT, Teng H, Lee YL, Chem. Eng. J., 394 (2020)
  42. Liu IP, Wang LW, Tsai MH, Chen YY, Teng H, Lee YL, J. Power Sources, 433 (2019)
  43. Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S, J. Phys. Chem. B, 109, 3480 (2005)
  44. Zebardastan N, Khanmirzaei M, Ramesh S, Ramesh K, Electrochim. Acta, 220, 573 (2016)