화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 429-437, April, 2022
Quantum confinement and effective masses dependence in black phosphorus quantum dots and phosphorene
E-mail:
In the present study, quantum confinement effect in phosphorene and black phosphorus quantum dots is extensively studied from experimental and theoretical viewpoints. These quantum structures were prepared with the help of Benzonitrile solvent using Liquid Phase Exfoliation and solvothermal-assisted Liquid Phase Exfoliation, respectively. On one hand, Fourier-transform infrared spectroscopy shows no sign of phosphorus oxidation in both phosphorene and black phosphorus quantum dots solutions. Furthermore, Raman spectroscopy showed a shift in B2gandA2g phonon modes for phosphorene and black phosphorus quantum dots as compared to bulk black phosphorus. On the other hand, structural characterization via high-resolution transmission electron microscopy imaging and electron diffraction patterns showed a high degree of crystallinity in both quantum structures with no sign of aggregations. Optical properties characterization showed the expected increase in the bandgap value for both quantum structures, which were supported by theoretical calculations using density functional theory and effective mass approximation. Interestingly, we demonstrate that the quantum confinement observed in phosphorene is weakened to the expected extent, relative to that in BPQDs, by the loss of two confinement dimensions. Appropriate models, describing the bandgap and effective mass dependence as a function of the confinement regime, are presented.
  1. Yoffe AD, Adv. Phys., 42(2), 173 (1993)
  2. Snoke DW, Solid State Physics: Essential Concepts, Pearson/Addison-Wesley, 2009.
  3. Efros AL, Efros AL, Semiconductors, 16, 1209 (1982)
  4. Dresselhaus G, J. Phys. Chem. Solids, 1(1-2), 14 (1956)
  5. Dignam MM, Phys. Rev. B, 50(4), 2241 (1994)
  6. Rahou D, Bekhouche H, Ghezal EA, Gueddim A, Bouarissa N, Ziani H, Chin. J. Phys., 66, 206 (2020)
  7. Choudhary K, Tavazza F, Predicting Anomalous Quantum Confinement Effect in van der Waals Materials, 2020.
  8. Yeo H, Lee JS, Khan ME, Kim HS, Jeon DY, Kim YH, J. Phys.: Mater., 3(3) (2020)
  9. Burt MG, J. Phys. Condens. Matter, 4(32), 6651 (1992)
  10. Zhao X, Wei CM, Yang L, Chou MY, Phys. Rev. Lett., 92(23) (2004)
  11. Fu N, Huang C, Lin P, Zhu M, Li T, Ye M, Ke S, J. Mater. Chem. A, 6(19), 8886 (2018)
  12. Zhang X, Xie H, Liu Z, Tan C, Luo Z, Li H, Zhang H, Angew. Chem.-Int. Edit., 54(12), 3653 (2015)
  13. Brus LE, J. Chem. Phys., 80(9), 4403 (1984)
  14. Yu H, Li J, Loomis RA, Wang LW, Buhro WE, Nat. Mater., 2(8), 517 (2003)
  15. Yu H, Li J, Loomis RA, Gibbons PC, Wang LW, Buhro WE, J. Am. Chem. Soc., 125(52), 16168 (2003)
  16. Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Lu Y, ACS Nano, 8(9), 9590 (2014)
  17. De Sousa DJP, De Castro LV, Da Costa DR, Pereira JM Jr, Phys. Rev. B, 94(23) (2016)
  18. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD, ACS Nano, 8(4), 4033 (2014)
  19. Xia F, Wang H, Jia Y, Nat. Commun., 5(1), 1 (2014)
  20. Wood JD, Wells SA, Jariwala D, Chen KS, Cho E, Sangwan VK, Hersam MC, Nano Lett., 14(12), 6964 (2014)
  21. Buscema M, Groenendijk DJ, Steele GA, Van Der Zant HS, Castellanos-Gomez A, Nat. Commun., 5(1), 1 (2014)
  22. Han ST, Hu L, Wang X, Zhou Y, Zeng YJ, Ruan S, Peng Z, Adv. Sci., 4(8), 1600435 (2017)
  23. Miao J, Zhang L, Wang C, Materials, 6(3) (2019)
  24. Brent JR, Savjani N, Lewis EA, Haigh SJ, Lewis DJ, O’Brien P, Chem. Commun., 50(87), 13338 (2014)
  25. Woomer AH, Farnsworth TW, Hu J, Wells RA, Donley CL, Warren SC, ACS Nano, 9(9), 8869 (2015)
  26. Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Salehi-Khojin A, Adv. Mater., 27(11), 1887 (2015)
  27. Hanlon D, Backes C, Doherty E, Cucinotta CS, Berner NC, Boland C, Coleman JN, Nat. Commun., 6(1), 1 (2015)
  28. Del Rio Castillo AE, Pellegrini V, Sun H, Buha J, Dinh DA, Lago E, Bonaccorso F, Chem. Mater., 30(2), 506 (2018)
  29. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Xian Y, ACS Sens., 2(4), 576 (2017)
  30. Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, He Z, J. Phys. Chem. Lett., 8(3), 591 (2017)
  31. Meng M, Gan Z, Zhang J, Liu K, Wang L, Li S, et al., Phys. Status Solidi B, 254(7), 1700011 (2017)
  32. Zhu C, Xu F, Zhang L, Li M, Chen J, Xu S, Sun L, Chem.-Eur. J., 22(22), 7357 (2016)
  33. Benabdallah I, Kara A, Benaissa M, Appl. Surf. Sci., 507 (2020)
  34. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Wentzcovitch RM, J. Phys. Condens. Matter, 21(39) (2009)
  35. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77(18), 3865 (1996)
  36. Heyd J, Scuseria GE, Ernzerhof M, J. Chem. Phys., 118(18), 8207 (2003)
  37. Monkhorst HJ, Pack JD, Phys. Rev. B, 13(12), 5188 (1976)
  38. Song SJ, Raja IS, Lee YB, Kang MS, Seo HJ, Lee HU, Han DW, Biomater. Res., 23(1), 1 (2019)
  39. Sugai S, Shirotani I, Solid State Commun., 53(9), 753 (1985)
  40. Surrente A, Mitioglu AA, Galkowski K, Tabis W, Maude DK, Plochocka P, Phys. Rev. B, 93(12) (2016)
  41. Sofer Z, Bouša D, Luxa J, Mazanek V, Pumera M, Chem. Commun., 52(8), 1563 (2016)
  42. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S, ACS Nano, 4(5), 2695 (2010)
  43. Shi W, Lin ML, Tan QH, Qiao XF, Zhang J, Tan PH, 2D Mater., 3(2) (2016)
  44. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS, Nat. Nanotechnol., 7(11), 699 (2012)
  45. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Geim AK, Phys. Rev. Lett., 97(18) (2006)
  46. Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux AL, Tang NY, Lévesque PL, Loiseau A, Leonelli R, Francoeur S, Martel R, Nat. Mater., 14(8), 826 (2015)
  47. Ge S, Zhang L, Wang P, Fang Y, Sci. Rep., 6(1), 1 (2016)
  48. Li Y, Liu Z, Hou Y, Yang G, Fei X, Zhao H, Guo Z, ACS Appl. Mater. Interfaces, 9(30), 25098 (2017)
  49. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L, Adv. Mater., 23(6), 776 (2011)
  50. Stengl V, Henych J, Nanoscale, 8, 3387 (2013)
  51. Lin T, Cong X, Lin ML, Liu XL, Tan PH, Nanoscale, 10(18), 8704 (2018)
  52. Castellanos-Gomez A, Vicarelli L, Prada E, Island JO, Narasimha-Acharya KL, Blanter SI, et al., 2D Mater., 1(2) (2014)
  53. Jia J, Jang SK, Lai S, Xu J, Choi YJ, Park JH, Lee S, ACS Nano, 9(9), 8729 (2015)
  54. Cheng J, Gao L, Li T, Mei S, Wang C, Wen B, Zhang H, Nano-Micro Lett., 12(1), 1 (2020)
  55. Ren X, Yang X, Xie G, Luo J, ACS Appl. Nano Mater., 3(5), 4799 (2020)
  56. Gui R, Jin H, Wang Z, Li J, Chem. Soc. Rev., 47(17), 6795 (2018)
  57. Amaral PE, Hall DC Jr, Pai R, Król JE, Kalra V, Ehrlich GD, Ji HF, ACS Appl. Nano Mater., 3(1), 752 (2020)
  58. Tauc J, Mater. Res. Bull., 3(1), 37 (1968)
  59. Benabdallah I, Auad Y, Sigle W, van Aken PA, Kociak M, Benaissa M, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 265 (2021)
  60. Rudenko AN, Katsnelson MI, Phys. Rev. B, 89(20) (2014)
  61. Guo GC, Wei XL, Wang D, Luo Y, Liu LM, J. Mater. Chem. A, 3(21), 11246 (2015)
  62. Li L, Kim J, Jin C, Ye GJ, Qiu DY, Felipe H, Wang F, Nat. Nanotechnol., 12(1), 21 (2017)
  63. Du K, Yang W, Deng S, Li X, Yang P, Nanomaterials, 10(1), 139 (2020)
  64. Zhang G, Chaves A, Huang S, Wang F, Xing Q, Low T, Yan H, Sci. Adv., 4(3), eaap9977 (2018)
  65. Yang J, Xu R, Pei J, Myint YW, Wang F, Wang Z, et al., Light Sci. Applications, 4(7), e312 (2015)
  66. Niu X, Li Y, Shu H, Wang J, J. Phys. Chem. Lett., 7(3), 370 (2016)
  67. Pejova B, Grozdanov I, Mater. Chem. Phys., 90(1), 35 (2005)
  68. Dong A, Yu H, Wang F, Buhro WE, J. Am. Chem. Soc., 130(18), 5954 (2008)
  69. Liu M, Jiang XF, Yan YR, Wang XD, Luo AP, Xu WC, Luo ZC, Opt. Commun., 406, 85 (2018)
  70. Qiao J, Kong X, Hu ZX, Yang F, Ji W, Nat. Commun., 5(1), 1 (2014)