Macromolecular Research, Vol.30, No.3, 198-204, March, 2022
Modification of Graphene Aerogel Embedded Form-Stable Phase Change Materials for High Energy Harvesting Efficiency
E-mail:
While porous graphene aerogel can hold plenty of pure phase change material (PCM) in the internal space, its volume shrinkage is a serious problem to decrease the weight of working material. Since the thermal energy storage (TES) capacity of PCM composite, however, depends on the mass ratio of pure PCM during the phase transition process, graphene aerogel filled PCM composite is an appropriate material for high latent heat thermal energy storage (LHTES). In this work, polydimethylsiloxane (PDMS) is embedded into the graphene aerogel by using a spraying method. The PDMS-embedded graphene aerogel exhibits higher mechanical property and flexibility than pristine aerogel. It reduces the volume shrinkage effectively and sustains the initial 3D porous structure to infiltrate pure PCM into the internal space, which can lead to an increase in the efficiency of thermo-electric energy harvesting due to the increase of PCM weight. A PN junction of thermo-electric power generator (PN TEG) is connected to the modified PCM composites, and a temperature difference between two sides of device occurs under the change of external conditions. The modified PCM composites constructed PN TEG generates stable and continuous thermo-electric energy during heating and cooling processes. In addition, finite element method (FEM) is employed to verify the experimental measurement.
- Zhang Q, Liang Q, Nandakumar DK, Qu H, Shi Q, Alzakia FI, Tay DJJ, Yang L, Zhang X, Suresh L, Nat. Commun., 12, 616 (2021)
- Yu C, Kim H, Youn JR, Song YS, ACS Appl. Energy Mater. (2021)
- Yu C, Yang SH, Pak SY, Youn JR, Song YS, Energy Conv. Manag., 169, 88 (2018)
- Kim TY, Kwak J, Kim BW, Energy Conv. Manag., 160, 14 (2018)
- Yu C, Youn JR, Song YS, Macromol. Res., 27, 606 (2019)
- Saha CR, Huda MN, Mumtaz A, Debnath A, Thomas S, Jinks R, Microelectron J., 96, 104685 (2020)
- Yu C, Youn JR, Song YS, Macromol. Res., 29, 534 (2021)
- Jiang Y, Wang Z, Shang M, Zhang Z, Zhang S, Nanoscale, 7, 10950 (2015)
- Yu C, Song YS, Nanomaterials, 11, 2192 (2021)
- Kogo G, Xiao B, Danquah S, Lee H, Niyogushima J, Yarbrough K, Candadai A, Marconnet A, Pradhan SK, Bahoura M, Sci. Rep., 10, 1 (2020)
- Kiziroglou ME, Wright SW, Toh TT, Mitcheson PD, Becker T, Yeatman EM, IEEE Trans. Ind. Electron., 61, 302 (2013)
- Karalis G, Tzounis L, Tsirka K, Mytafides CK, Itskaras AV, Liebscher M, Lambrou E, Gergidis LN, Barkoula NM, Paipetis AS, ACS Appl. Mater. Interfaces (2021)
- Famengo A, Ferrario A, Boldrini S, Battiston S, Fiameni S, Pagura C, Fabrizio M, Polym. Int., 66, 1725 (2017)
- Byon YS, Jeong JW, Renew. Sust. Energ. Rev., 128, 109921 (2020)
- Jo SE, Kim MS, Kim MK, Kim YJ, Smart Mater. Struct., 22, 115008 (2013)
- Lin Y, Alva G, Fang G, Energy, 165, 685 (2018)
- Pielichowska K, Pielichowski K, Prog. Mater. Sci., 65, 67 (2014)
- Kim S, Drzal LT, Sol. Energy Mater. Sol. Cells, 93, 136 (2009)
- Cárdenas B, León N, Renew. Sust. Energ. Rev., 27, 724 (2013)
- Kenisarin MM, Renew. Sust. Energ. Rev., 14, 955 (2010)
- Zhang S, Feng D, Shi L, Wang L, Jin Y, Tian L, Li Z, Wang G, Zhao L, Yan Y, Renew. Sust. Energ. Rev., 135, 110127 (2021)
- Sharma A, Tyagi VV, Chen C, Buddhi D, Renew. Sust. Energ. Rev., 13, 318 (2009)
- Baetens R, Jelle BP, Gustavsen A, Energy Buildings, 42, 1361 (2010)
- Oró E, De Gracia A, Castell A, Farid MM, Cabeza LF, Appl. Energy, 99, 513 (2012)
- Yang L, Yang J, Tang LS, Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Yang W, Energy Fuels, 34, 2471 (2020)
- Lv P, Liu C, Rao Z, Appl. Energy, 182, 475 (2016)
- Alkan C, Sari A, Sol. Energy, 82, 118 (2008)
- Wang Y, Xia TD, Feng HX, Zhang H, Renew. Energy, 36, 1814 (2011)
- Shi X, Yazdani MR, Ajdary R, Rojas OJ, Carbohydr. Polym., 254, 117279 (2021)
- Liao H, Duan W, Liu Y, Wang Q, Wen H, J. Energy Storage, 35, 102248 (2021)
- Jamekhorshid A, Sadrameli S, Farid M, Renew. Sust. Energ. Rev., 31, 531 (2014)
- Konuklu Y, Ostry M, Paksoy HO, Charvat P, Energy Buildings, 106, 134 (2015)
- Yu C, Youn JR, Song YS, Fibers Polym., 20, 545 (2019)
- Hussain SI, Kalaiselvam S, J. Therm. Anal. Calorim., 140, 133 (2020)
- Yu C, Youn JR, Song YS, Fibers Polym., 21, 24 (2020)
- Wang Y, Mi H, Zheng Q, Ma Z, Gong S, ACS Appl. Mater. Interfaces, 7, 21602 (2015)
- Yang J, Qi GQ, Liu Y, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB, Carbon, 100, 693 (2016)
- Zhao J, Luo W, Kim JK, Yang J, ACS Appl. Energy Mater., 2, 3657 (2019)
- Wei D, Wu C, Jiang G, Sheng X, Xie Y, Sol. Energy Mater. Sol. Cells, 224, 111013 (2021)
- Zhang P, Xiao X, Ma Z, Appl. Energy, 165, 472 (2016)
- Zuo L, Zhang Y, Zhang L, Miao YE, Fan W, Liu T, Materials, 8, 6806 (2015)
- Lee JH, Park SJ, Carbon, 163, 1 (2020)
- Kashyap S, Kabra S, Kandasubramanian B, J. Mater. Sci., 55, 4127 (2020)
- He H, Klinowski J, Forster M, Lerf A, Chem. Phys. Lett., 287, 53 (1998)
- Guerrero-Contreras J, Caballero-Briones F, Mater. Chem. Phys., 153, 209 (2015)
- Yu C, Youn JR, Song YS, J. Polym. Res., 28, 1 (2021)
- Hamurcu EE, Baysal BM, J. Polym. Sci. B: Polym. Phys., 32, 591 (1994)
- Yu C, Youn JR, Song YS, Polym. Adv. Technol., Pat.5419 (2021).
- Kiflemariam R, Almas M, Lin C, in Proc. 2014 COMSOL Conf, pp 1-5, 2014.