Applied Chemistry for Engineering, Vol.33, No.2, 202-209, April, 2022
NiCl2 첨착된 흡착제 상에서 암모니아의 흡착 및 재생 특성
Adsorption and Regeneration Characteristics of Ammonia on NiCl2 Impregnated Adsorbents
E-mail:
초록
암모니아에 대한 흡착 성능 향상을 목적으로 NiCl2 첨착에 적합한 지지체 및 NiCl2의 첨착량이 암모니아 흡착능에 미치는 영향을 연구하였다. NiCl2는 초음파 조사 하에서 여러 지지체의 표면 위로 첨착하였으며, NiCl2가 첨착된 흡착 제의 물리화학적 특성 및 암모니아 흡착 성능을 관찰하였다. 다양한 지지체들 중, 가장 넓은 비표면적을 갖는 활성탄 위로 NiCl2를 첨착했을 때, 암모니아의 흡착능이 가장 우수한 것으로 나타났다. 활성탄 위로 NiCl2의 첨착량을 변화시 킨 결과, 2 mmolㆍg-1을 첨착한 NiCl2(2.0)/AC 흡착제가 5.977 mmolㆍg-1의 가장 우수한 암모니아 흡착 용량을 나타냈 다. 또한 저온 열을 이용할 수 있는 조건하 5회의 반복 순환 시험에서 흡착 용량이 거의 일정한 수준으로 유지됨을 나타내어 흡착제의 재생 능력이 우수함을 알 수 있었다.
Effects of the support and amount of NiCl2 on ammonia adsorption capacity were investigated to improve the ammonia adsorption performance. NiCl2 was impregnated onto the surface of various supports under ultrasonic irradiation. The physicochemical properties and ammonia adsorption performance of NiCl2-impregnated adsorbents were investigated. Among the various supports, it was found that the adsorption capacity of ammonia was the best when NiCl2 was impregnated on activated carbon (AC) with the highest specific surface area. As a result of changing the amount of NiCl2 impregnated on AC, the NiCl2(2.0)/AC adsorbent impregnated with 2 mmolㆍg-1 of NiCl2 showed the highest ammonia adsorption capacity of 5.977 mmolㆍg-1. In addition, the adsorption capacity was found to be maintained at an almost constant level in five repeated cycle tests under the condition that low-temperature heat could be utilized. This indicates that the adsorbent has excellent regeneration ability.
- Jain IP, Int. J. Hydrog. Energy, 34, 7368 (2009)
- Park HK, Park JS, Appl. Chem. Eng., 31, 153 (2020)
- Hwang HT, Varma A, Curr. Opin. Chem. Eng., 5, 42 (2014)
- Muroyama H, Saburi C, Matsui T, Eguchi K, Appl. Catal. A: Gen., 443-444, 119 (2012)
- Andersson J, Gronkvist S, Int. J. Hydrog. Energy, 44, 11901 (2019)
- Chatterjee S, Parsapur RK, Huang KW, ACS Energy Lett., 6, 4390 (2021)
- Smith C, Murciano LT, Adv. Energy Mater., 11, 2003845 (2021)
- Aziz M, Wijayanta AT, Nandiyanto ABD, Energies, 13, 3062 (2020)
- Lin L, Tian Y, Su W, Luo Y, Chen C, Jiang L, Sustain. Energy Fuels, 4, 3006 (2020)
- Kale MJ, Ojha DK, Biswas S, Militti JI, McCormick AV, Schott JH, Dauenhauer PJ, Cussler EL, ACS Appl. Energy Mater., 3, 2576 (2020)
- Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162 (2018)
- Du Z, Denkenberger D, Pearce JM, Sol. Energy, 122, 562 (2015)
- Schuth F, Palkovits R, Schlogl R, Su DS, Energy Environ. Sci., 5, 6278 (2012)
- Yin SF, Xu BQ, Zhou XP, Au CT, Appl. Catal. A: Gen., 277, 1 (2004)
- Lamb KE, Dolan MD, Kennedy DF, Int. J. Hydrog. Energy, 11, 3580 (2019)
- Kukhun AA, Hwang HT, Varma A, Ind. Eng. Chem. Res., 50, 8824 (2011)
- Pozo CAD, Cloete S, Energy Conv. Manag., 255, 115312 (2022)
- Zheng W, Hu J, Rappeport S, Zheng Z, Wang Z, Han Z, Langer J, Economy J, Microporous Mesoporous Mater., 234, 146 (2016)
- Bandosz TJ, Petit C, J. Colloid Interface Sci., 338, 329 (2009)
- Ghauri M, Tahir M, Abbas T, Khurram MS, Shehzad K, Sci. Int., 24, 411 (2012)
- Rieth AJ, Dinca M, J. Am. Chem. Soc., 140, 3461 (2018)
- Khabzina Y, Farrusseng D, Microporous Mesoporous Mater., 265, 143 (2018)
- Ouyang W, Zheng S, Wu C, Hu X, Chen R, Zhuo L, Wang Z, Int. J. Hydrog. Energy, 46, 32559 (2021)
- Sharonov VE, Aristov YI, React. Kinet. Catal. Lett., 85, 183 (2005)
- Yeom CJ, Kim YH, Environ. Eng. Res., 22, 401 (2017)
- Helminen J, Helenius J, Paatero E, J. Chem. Eng. Data, 46, 391 (2001)
- Liu CY, Aika KI, Res. Chem. Intermed., 28, 409 (2002)
- Liu CY, Aika KI, Chem. Lett., 31, 798 (2002)
- Kubota M, Matsuo K, Yamanouchi R, Matsuda H, J. Chem. Eng. Jpn., 47, 542 (2014)
- Zhang T, Miyaoka H, Miyaoka H, Ichikawa T, Kojima Y, ACS Appl. Energy Mater., 1, 232 (2018)
- Wang J, Jiang W, Zhang Z, Long D, Ind. Eng. Chem. Res., 56, 3283 (2017)
- Smith C, Malmali M, Liu CY, McCormick AV, Cussler EL, ACS Sustain. Chem. Eng., 6, 11827 (2018)
- Aoki T, Ichikawa T, Miyaoka H, Kojima Y, J. Phys. Chem. C, 118, 18412 (2014)
- Pan X, Zhu M, Mei H, Liu Z, Shen T, ChemistrySelect, 5, 5720 (2020)
- Park JH, Rasheed HU, Cho KH, Yoon HC, Yi KB, Korean J. Chem. Eng., 37, 1029 (2020)
- Petit C, Karwacki C, Peterson G, Bandosz TJ, J. Phys. Chem. C, 111, 12705 (2007)
- Song K, Lim JH, Kim CG, Park CS, Kim YH, Appl. Chem. Eng., 32, 671 (2021)
- Hwang HS, Park I, Lee IK, Choi WJ, Lee SI, Lee JY, Appl. Chem. Eng., 23, 383 (2012)
- Han JU, Kim DJ, Kang M, Kim JW, Kim JM, Yie JE, J. Korean Ind. Eng. Chem., 16, 312 (2005)
- Afriani A, Abdullah I, Krisnandi YK, AIP Conf. Proc., 2349, 020048 (2021)
- Chu Y, Li YW, Wu QB, Hu J, Tian QQ, Hu HL, Zhu YP, J. Inorg. Mater., 31, 992 (2016)
- Rahman NJA, Ramli A, Jumbri K, Uemura Y, Sci. Rep., 9, 16223 (2019)
- Rejitha KS, Ichikawa T, Mathew S, J. Therm. Anal. Calorim., 103, 515 (2011)
- Breternitz J, Vilk YE, Giraud E, Reardon H, Hoang TKA, Jopek AG, Gregory DH, ChemSusChem, 9, 1312 (2016)