화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 510-520, May, 2022
Enhanced crystallization and properties of poly(ethylene terephthalate) nanocomposites with zeolites from 3D to 2D topologies
E-mail:
To improve the low crystallization rate and long molding cycle of Poly(ethylene terephthalate) (PET), series of PET nanocomposites incorporated small quantities of zeolites with different topologies were blended by melt compounding. The nucleation influence of 3-dimensional zeolites Y, ZSM-5 and 2- dimensional zeolite MCM-22P on the crystallization manner of PET was analyzed by non-isothermal and isothermal crystallization, quantitative evaluation of nanoparticle dispersion and morphology of nanoparticles. The results show that all PET/zeolite nanocomposites exhibit higher crystallization temperature and faster crystallization rate than PET due to large specific surface area of zeolites and their superior dispersion in the PET matrix. Among them, PET/MCM-22P nanocomposites remarkably improved the crystallization behavior, thermal stability and oxygen barrier properties, which is related to the layered morphology of MCM-22P and hydrogen bond interactions between MCM-22P and PET. It is revealed that MCM-22P can provide more heterogeneous nucleation sites for PET by exfoliation in melting compounding. Furthermore, the nucleation mechanism induced by MCM-22P was investigated by the means of Mozhishen method, Avrami equation and theory of Hoffman-Lauritzen. The results indicate that the incorporation of MCM-22P can decrease the free energy of nucleation and fold surface in PET crystallization process, thus improving the crystallinity.
  1. Hadjizadeh A, Ajji A, Bureau MN, J. Mech. Behav. Biomed. Mater., 3, 574 (2010)
  2. Wang Y, Shen J, Yuan J, J. Colloid Interface Sci., 480, 205 (2016)
  3. Wang M, Hu W, Ma Y, Ma YQ, Macromolecules, 38, 2806 (2005)
  4. Deshpande VD, Jape S, J. Appl. Polym. Sci., 116, 3541 (2010)
  5. Garcia D, J. Polym. Sci. B: Polym. Phys., 22, 2063 (1984)
  6. Kalfoglou NK, Skafidas DS, Eur. Polym. J., 30, 933 (1994)
  7. Yu Y, Bu HS, Macromol. Chem. Phys., 202, 421 (2001)
  8. Xing S, Li R, Tang P, Macromol. Chem. Phys., 216, 301 (2015)
  9. Zhang W, Zhang H, Yang Y, Tang P, Polym. Bull., 79, 3803 (2021)
  10. Xing SL, Li R, Si JJ, Tang P, J. Ind. Eng. Chem., 38, 167 (2016)
  11. Ghasemi H, Carreau PJ, Kamal MR, Tabatabaei SH, Polym. Eng. Sci., 52, 420 (2012)
  12. Chowreddy RR, Nord-Varhaug K, Rapp F, J. Mater. Sci., 53, 7017 (2018)
  13. Tong Z, Zhuo W, Zhou J, Huang R, Jiang G, J. Mater. Sci., 52, 10567 (2017)
  14. Shin YH, Lee WD, Im SS, Macromol. Res., 15, 662 (2007)
  15. Jiang J, Li G, Liu H, Ding Q, Mai KC, Compos. Pt. A-Appl. Sci. Manuf., 45, 88 (2013)
  16. Lv Z, Zhang L, Yang Y, Bi X, Mater. Des., 32, 3624 (2011)
  17. Lv Z, Wang K, Qiao Z, Wang W, Mater. Des., 31, 3804 (2010)
  18. Mohamed MG, Atayde EC, Matsagar BM, Na J, Yamauchi Y, Wu KCW, Kuo SW, J. Taiwan Inst. Chem. Eng., 112, 180 (2020)
  19. Han B, Yin C, Chang J, Pang Y, Lv P, Song W, Wang X, Polymer, 12, 2108 (2020)
  20. Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J, Nanomaterials, 11, 2810 (2021)
  21. Mohamed MG, Kuo SW, Macromol. Chem. Phys., 220, 1800306 (2019)
  22. Chaurasia A, Mulik RS, Parashar A, Mech. Adv. Mater. Struct., 1 (2021)
  23. Vinyas M, Athul SJ, Harursampath D, Loja M, Thoi TN, Mater. Res. Express, 6, 092002 (2019)
  24. Papageorgiou GZ, Karandrea E, Giliopoulos D, Papageorgiou DG, Ladavos A, Katerinopoulou A, Achilias DS, Triantafyllidis KS, Bikiaris DN, Thermochim. Acta, 576, 84 (2014)
  25. Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS, Polymer, 48, 966 (2007)
  26. Zhang X, Zhao S, Mohamed MG, Kuo SW, Xin Z, J. Mater. Sci., 55, 14642 (2020)
  27. Kokotailo GT, Lawton SL, Olson DH, Meier WM, Nature, 272, 437 (1978)
  28. Flanigen EM, Lok BM, Patton RL, Wilson ST, Pure Appl. Chem., 58, 1351 (1986)
  29. Ward JW, J. Catal., 9, 225 (1967)
  30. Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG, Nature, 396, 353 (1998)
  31. Corma A, Corell C, Pérez-Pariente J, Zeolites, 15, 2 (1995)
  32. Maheshwari S, Jordan E, Kumar S, Bates FS, Penn RL, Shantz DF, Tsapatsis M, J. Am. Chem. Soc., 130, 1507 (2008)
  33. Michels NL, Mitchell S, Milina M, Kunze K, Krumeich F, Marone F, Erdmann M, Marti N, Pérez-Ramírez J, Adv. Funct. Mater., 22, 2509 (2012)
  34. Bartczak Z, Galeski A, Krasnikova NP, Polymer, 28, 1627 (1987)
  35. Martuscelli E, Silvestre C, Bianchi L, Polymer, 24, 1458 (1983)
  36. Taniguchi A, Cakmak M, Polymer, 45, 6647 (2004)
  37. Kang C, Xu J, Niu L, Li C, Fan J, Polym. Compos., 42(6), 3098 (2021)
  38. Ke YC, Long CF, Qi ZN, J. Appl. Polym. Sci., 71, 1139 (1999)
  39. Kim JY, Park HS, Kim SH, Polymer, 47, 1379 (2006)
  40. Margarit VJ, Martínez-Armero ME, Navarro MT, Martínez C, Corma A, Angew. Chem.-Int. Edit., 54, 13724 (2015)
  41. Gaare K, Akporiaye D, J. Phys. Chem. B, 101, 48 (1997)
  42. Burkett SL, Davis ME, Chem. Mater., 7, 920 (1995)
  43. Kennedy GJ, Lawton SL, Fung AS, Rubin MK, Steuernagel S, Am. Chem. Soc., 215, U482 (1998)
  44. Konya Z, Hannus I, Kiricsi I, Lentz P, Nagy JB, Colloids Surf. A: Physicochem. Eng. Asp., 158, 35 (1999)
  45. Parvinzadeh M, Moradian S, Rashidi A, Yazdanshenas ME, Appl. Surf. Sci., 256, 2792 (2010)
  46. Yu HY, Zhang H, Song ML, Zhou Y, Yao J, Ni QQ, ACS Appl. Mater. Interfaces, 9, 43920 (2017)
  47. Zhang Z, Feng L, Li Y, Wang Y, Yan C, Polym. Compos., 36, 510 (2015)
  48. Hoffman JD, Weeks JJ, J. Res. Nat. Bur. Stand. Sec., 66A, 13 (1962)
  49. Reinsch VE, Rebenfeld L, J. Appl. Polym. Sci., 52, 649 (1994)
  50. Jiang XL, Luo SJ, Sun K, Chen XD, Express Polym. Lett., 1, 245 (2007)
  51. Yu B, Wang X, Qian X, Xing W, Yang H, Ma L, Lin Y, Jiang S, Song L, Hu Y, Lo S, RSC Adv., 4, 31782 (2014)
  52. Cao L, Su D, Su Z, Chen X, Ind. Eng. Chem. Res., 53, 2308 (2014)