Polymer(Korea), Vol.46, No.3, 361-368, May, 2022
할로이사이트 충전 에폭시 수지 계의 특성
Characteristics of a Halloysite Filled Epoxy Resin System
E-mail:
초록
본 연구에서는 순수한 할로이사이트 나노튜브(HNT)와 NaOH 수용액(0.01 M 또는 5 M)으로 처리한 HNT를 나노충전제로 사용하였다. 전형적인 diglycidyl ether of bisphenol A(DGEBA) 에폭시 수지에 0-4 phr의 HNT를 혼 합하고 무수물 경화제와 이미다졸 기반 촉매로 경화하여 에폭시-HNT 나노복합재를 제조하였다. 에폭시-HNT 나노 복합재의 기계적 특성은 충격시험기 및 만능재료시험기로 측정하였고 경화 거동 및 열적 특성은 DSC로 조사하였 다. 0.01 M NaOH 수용액으로 처리한 HNT가 에폭시-HNT 나노복합재의 기계적 특성 향상에 가장 효과적이었다. HNT 함량이 증가함에 따라 에폭시 수지 계의 DSC 발열곡선의 피크 온도는 낮아졌으나 발열반응열은 거의 변화가 없었다. 0.01 M NaOH 수용액으로 처리한 HNT를 2 phr 함유한 에폭시-HNT 나노복합재가 가장 우수한 기계적 특성 및 높은 유리전이온도를 보였다.
In this study, neat halloysite nanotube (HNT) and HNT treated with an aqueous NaOH solution (0.01 M or 5 M) were used as nanofillers. A typical diglycidyl ether of bisphenol A (DGEBA) epoxy resin was mixed with 0-4 phr HNT then an anhydride curing agent and an imidazole-based catalyst were used to prepare epoxy-HNT nanocomposites by curing. Mechanical properties of the epoxy-HNT nanocomposites were measured by impact tester and universal testing machine and curing behavior and thermal properties of them were investigated by DSC. HNT treated with 0.01 M aqueous NaOH solution was most effective in improving the mechanical properties of the epoxy-HNT nanocomposites. With increasing HNT content, the peak temperature of the DSC exothermic curve decreased but the exothermic reaction heat almost unchanged. The epoxy-HNT nanocomposite containing 2 phr of HNT treated with 0.01 M NaOH aqueous solution showed the best mechanical properties and the highest glass transition temperature.
- Jin FL, Li X, Park SJ, J. Ind. Eng. Chem., 44, 1 (2015)
- Kim T, Lim CS, Kim JC, Seo B, J. Adhes. Interface, 18, 68 (2017)
- Harada M, J. Adhes. Interface, 19, 44 (2018)
- Roudsari GM, Mohanty AK, Misra M, ACS Sustain. Chem. Eng., 5, 9528 (2017)
- Konnola R, Deeraj BDS, Sampath S, Saritha A, Joseph K, Polym. Compos., 40, 2629 (2019)
- Ravichandran G, Rathnakar G, Santhosh N, Chennakeshava R, Hashmi MA, SN Appl. Sci., 1, 296 (2019)
- White RD, Bavykin DV, Walsh FC, Nanotechnology, 23, 6 (2012)
- Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L, Polymer, 55, 6519 (2014)
- Srivastava S, Pandey A, Comput. Commun., 11, 39 (2019)
- Deng S, Zhang J, Ye L, Wu J, Polymer, 49, 5119 (2018)
- Jiang H, Cheng M, Ai C, Meng F, Mou Y, Sun S, Li C, Hu S, Polym. Chem., 12, 5342 (2021)
- Alamri H, Low IM, Polym. Compos., 33, 589 (2012)
- Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH, Molecules, 22, 838 (2017)
- Akbari V, Najafi F, Vahabi H, Jouyandeh M, Badawi M, Morisset S, Saeb MR, Prog. Org. Coat., 135, 555 (2019)
- Del Buffa S, Bonini M, Ridi F, Severi M, Losi P, Volpi S, Baglioni P, J. Colloid Interface Sci., 448, 501 (2015)
- Kim MI, Kim S, Kim T, Lee DK, Seo B, Lim CS, Coatings, 7, 231 (2017)
- Longhi M, Zini LP, Kunst SR, Zattera A, Polym. Polym. Compos., 25, 593 (2017)
- Onizuka K, J. Adhes. Interface, 18, 2 (2017)
- Ferrari PC, Araujo FF, Pianaro SA, Cerâmica, 63, 423 (2017)
- Sánchez M, Uicich JF, Arenas GF, Rodríguez ES, Montemartini PE, Penoff ME, J. Appl. Polym. Sci., 136, 47979 (2019)
- Altuna FI, Riccardi CC, Marín Quintero DC, Ruseckaite RA, Stefani PM, Int. J. Polym. Sci., 2019 (2019)
- Mauri AN, Galego N, Riccardi CC, Williams RJJ, Macromolecules, 30, 1616 (1997)
- Jouyandeh M, Karami Z, Jazani OM, Formela K, Paran SMR, Jannesari A, Saeb MR, Prog. Org. Coat., 126, 129 (2019)
- Liu M, Guo B, Du M, Cai X, Jia D, Nanotechnology, 18, 455703 (2007)