화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.2, 193-198, April, 2001
원자이동 라디칼중합을 이용한 아령모양 고차분지형 양친매성 블록공중합체의 합성
Synthesis of Dumbbell-shaped Hyperbranched Amphiphilic Block Copolymer by Controlled Atom Transfer Radical Polymerization
E-mail:
초록
친수성 개시제와 AB type의 단량체인 p-chloromethylstyrene (CMS)을 원자이동 라디칼 중합하여, core 부분은 친수성 고분자인 poly(ethylene glycol) (PEG) 로 구성되고, arm 부분에 hyperbranched PS를 가지는 양친매성 고분자를 합성하였다. 양 말단에 관능기를 가지는 친수성 개시제를 PEG과 2-bromopropionyl bromide와의 반응을 통하여 합성하였다. 합성된 양친매성 블록 공중합체는 (1)H NMR과 GPC로부터 그 구조와 분자량, 분자량분포를 확인하였다. 분자량은 중합시간이 길어짐에 따라 증가한다는 것을 알 수 있었으며, 분자량분포도는 1.39 이하로 좁게 나타났다. 또한 arm 부분의 chain density를 조절하기 위하여 styrene와 CMS를 공중합하였다. (1)H NMR 사용하여 분석한 결과 양친매성 블록 공중합체 분자의 모양이 용매에 따라서 변화된다는 것을 알 수 있었다.
Amphiphilic block copolymers containing hydrophilic ethylene glycol core and hyperbranched polystyrene (PS) arm were synthesized by atom transfer radical polymerization using hydrophilic macroinitiator and p-chloromethyl styrene (CMS) as AB type monomer. Hydrophilic poly(ethylene glycol) (PEG) macroinitiators with difuntional groups were synthesized by reacting PEG and 2-bromopropionyl bromide. The chemical structure, molecular weight, and polydispersity index of the amphiphilic block copolymer were characterized by (1)H-NMR spectroscopy and GPC analysis. The molecular weight increased as the reaction time increased. Polydispersity index of the obtained polymer was relatively narrow (below 1.39). To control chain density of the hyperbranched PS, styrene and CMS were copolymerized. It was found that amphiphilic block copolymer molecule underwent conformational change in different solvents based on the result for (1) H-NMR spectroscopic analysis.
  1. Jankova K, Chen XY, Kops J, Batsberg W, Macromolecules, 31(2), 538 (1998) 
  2. Zhang X, Xia JH, Matyjaszewski K, Macromolecules, 31(15), 5167 (1998) 
  3. Muller AH, Yan DY, Wulkow M, Macromolecules, 30(23), 7015 (1997) 
  4. Angot S, Taton D, Gnanou Y, Macromolecules, 33(15), 5418 (2000) 
  5. Szwarc M, Levy M, Milkovich, J. Am. Chem. Soc., 78, 2656 (1956) 
  6. Cho SM, Lee HS, Park KY, Polym. Sci. Technol., 11(2), 246 (2000)
  7. Otsu T, Yoshida M, Kuriyama A, Polym. Bull., 7, 45 (1982)
  8. Zhang ZB, Ying SK, Shi ZQ, Polymer, 40(5), 1341 (1999) 
  9. Vergin RPN, Odell PG, Michalak LM, Georges MK, Macromolecules, 26, 5316 (1993) 
  10. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M, Macromolecules, 30(17), 5192 (1997) 
  11. Matyjaszewski K, Gaynor SG, Macromolecules, 30(23), 7042 (1997) 
  12. Gaynor SG, Edelman S, Matyjasjewski K, Macromolecules, 29, 5192 (1997) 
  13. Matyjaszewski K, Coca S, Gaynor SG, Wei ML, Woodworth BE, Macromolecules, 30(23), 7348 (1997) 
  14. Shipp DA, Wang JL, Matyjaszewski K, Macromolecules, 31(23), 8005 (1998) 
  15. Matyjaszewski K, Gaynor SG, Muller AH, Macromolecules, 30(23), 7034 (1997) 
  16. Zhang X, Matyjaszewski K, Macromolecules, 32(6), 1763 (1999) 
  17. Yan DY, Muller AH, Matyjaszewski K, Macromolecules, 30(23), 7024 (1997) 
  18. Arehart SV, Matyjaszewski K, Macromolecules, 32(7), 2221 (1999) 
  19. Beers KL, Boo S, Gaynor SG, Matyjaszewski K, Macromolecules, 32(18), 5772 (1999) 
  20. Teodorescu M, Matyjaszewski K, Macromolecules, 32(15), 4826 (1999) 
  21. Matyjaszewski K, Shipp DA, McMurtry GP, Gaynor SG, Pakula T, J. Polym. Sci. A: Polym. Chem., 38(11), 2023 (2000) 
  22. Gitsov I, Frechet JM, J. Am. Chem. Soc., 118(15), 3785 (1996) 
  23. Heise A, Hedrick JL, Frank CW, Miller RD, J. Am. Chem. Soc., 121(37), 8647 (1999) 
  24. Gitsov I, Wooley KL, Hewker CJ, Ivanova PT, Frechet JMJ, Macromolecules, 26, 5621 (1993) 
  25. Gitsov I, Frechet JMJ, Macromolecules, 26, 6536 (1993) 
  26. Chang YK, Kim CH, Polym. Sci. Technol., 8(4), 409 (1997)
  27. Won CO, Park YS, Kang YS, Polym. Sci. Technol., 10(3), 360 (1999)
  28. Kondn S, Ohtsuka T, Ogura K, Tsuda K, J. Macromol. Sci.-Chem., 13, 767 (1979)
  29. Matyjaszewski K, Macromolecules, 31(15), 4710 (1998)