Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.6, 632-636, October, 2000
α-Benzoinoxime에 의한 Molybdenum의 침전 분리
Precipitation Separation of Molybdenum by α-Benzoinoxime
E-mail:
초록
본 연구에서는 α-Benzoinoxime의 첨가방법을 회분식 및 반회분식 등으로 변화시켜 다성분계(Rb, Cs, Sr, Ba, Mo, Zr, Te, Ru, Y, Ce, Pr, Nd, Sm)로 구성된 모의용액에 함유된 Mo의 침전거동 및 기타 원소들로부터의 정제율을 조사하고, 후속 정제공정에 방해작용을 일으키는 화합물인 과산화수소를 사용하지 않고 생성된 침전물을 용해하는 실험을 수행하였다. α-Benzoinoxime의 첨가방법에 따라 Mo의 침전율은 큰 차이가 없었으나 Mo의 정제율 측면에서는 반응방법을 반회분식으로 한 경우가 우수한 것으로 나타났다. 0.4 N NaOH로 5 min간 침전물을 용해한 결과 Mo은 97.5% 용해되어 과산화수소를 첨가한 경우와 거의 비슷하였으며, 첨가된 과산화수소는 α-Benzoinoxime 재침전물의 용해속도를 가속시키는 역할만 하는 것으로 나타난다. 또한 모의용액 내 함유된 기타 원소들 중 Zr과 Ru만이 각각 1.3, 7.7% 함유되어 Mo의 정제율 측면에서도 유리하였다. 이 같은 Mo을 선택적으로 용해함으로써 후속 은 함침 활성탄 흡착공정에 들어가는 용해액 내 유기물의 양을 약 50% 정도 줄일 수 있다.
This study investigated precipitation behavior and purification fraction of molybdenum according to the adding methods (batch and semi-batch) of α-Benzoinoxime in a simulated solution that was composed of 13 elements (Rb, Cs, Sr, Ba, Mo, Zr, Te, Ru, Y, Ce, Pr, Nd, Sm). Experiments were performed to dissolve precipitate without hydrogen peroxide that acts as a disturbing compound in a subsequent purification process. The precipitation fraction of molybdenum was similar irrespective of the adding method of α-Benzoinoxime. However, in the purification aspect, the addition of α-Benzoinoxime by semi-batch gave better results than by batch method. In 0.4 N NaOH solution without hydrogen peroxide, 97.5% molybdenum was dissolved from Mo precipitate within 5 minutes. This result was similar to the case of hydrogen peroxide addition, however, the addition only induced the rapid dissolution of α-Benzoinoxime re-precipitate. Besides, the dissolution method without hydrogen peroxide was favorable in the purification aspect because only small fractions of zirconium and ruthenium, 1.3 and 7.7%, respectively, were persent in the dissolving solution. Such a selective dissolution of molybdenum made possible to decrease roughly 50% of organic quantity of the dissolving solution to be fed in a subsequent silver coated activated carbon adsorption process.
- Langton MA, Trans. Am. Nucl. Soc., 72, 134 (1995)
- IAEA, "Fission Molybdenum for Medical Use," IAEA-TECDOC-515 (1989)
- Sameh AA, Hans JA, Radiochim. Acta, 41, 65 (1987)
- Cheng WL, Lee CS, Chen CC, Ting G, Radiochim. Acta, 47, 69 (1989)
- Iturbe JL, Appl. Radiat. Isot., 41(7), 693 (1990)
- Gupta AK, Williams ES, Aguwa AA, Adsorption Ion Exchange, 78, 103 (1979)
- Sameh AA, Hans JA, Radiochim. Acta, 42, 65 (1987)
- Ejaz E, Mamoon AM, Qureshi MA, Appl. Radiat. Isto., 39, 1 (1988)
- Wei T, Cheng WL, Ting G, Solvent Extract. Ion Exchange, 2(3), 435 (1984)
- Sivaramakrihan CK, Rep. BARC-84 (1976)
- Arino H, Cosolito FJ, George KD, Thrnton AK, U.S. Patent, 3,940,318
- Cheng WL, Lee CS, Chen CC, Wang YM, Ting G, Appl. Radiat. Isto., 40(4), 315 (1989)
- Knowles H, Bur. Stds. J. Res., 9, 1 (1932)
- Hwang DS, Choung WM, Kim YK, Lee KI, Park JH, J. Korean Ind. Eng. Chem., 11(3), 266 (2000)
- Jdid E, Blazy P, Ind. Miner. Mines Carrier Tech., 2, 83 (1989)
- Scadden EM, Ballou NE, "The Radiochemistry of Molybdenum," 6, National Research Council, Washington, D.C. (1960)