화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.3, 421-426, May, 2001
박리형 PCL/Clay 나노복합재료 제조와 특성
Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization
E-mail:
초록
Montmorillonite (MMT) 의 층간에 poly(ε-caprolactone ) diol과 반응할 수 있는 -COOH기를 삽입하기 위하여 11-aminododecanoic acid를, 그리고 MMT의 층간거리를 넓혀주기 위하여 세칠트리메칠암모늄 브로마이드 (CTMA)를 각각 삽입시켰다. 이렇게 개질된 MMT를 THF 용액상태에서 poly(ε-caprolactone) diol (M(n)=2000)와 80 ℃에서 4시간 동안 반응하였다. 반응 후, poly(ε-caprolactone) diol (M(n)=80000)을 이 용액에 삽입하여 같은 온도에서 12시간 동안 혼합하였다. 이 용액을 실리콘 몰드에 부어 60 ℃ 진공 오븐에서 6시간 동안 건조하여 poly(ε-caprolactone)(PCL)/clay 나노복합재료 필름을 제조하였다. XRD와 TEM으로 확인한 결과 실리케이트 층이 완전히 박리된 박리형 나노복합재료임을 확인하였다. 그리고 MMT의 양에 따른 PCL/clay 나노복합재료의 기계적 성질과 열적 성질을 tensile tester와 DSC로 확인하였다. MMT가 PLC 매트릭스에 균일하게 분산도어 있어 복합재료의 영율이 향상되었으나, 인장강도에는 영향이 거의 없었다. 그리고 MMT의 양이 PCL에 대하여 3 wt%까지 증가함에 따라 PCL의 결정화 온도가 증가하였다.
11-Aminododecanoic acid, to insert the functional group of -COOH reacted with the end group of poly(ε-caprolactone) diol, and cetyltrimethylammonium bromide(CTMA). to increase the d-spacing of Montmorillonite (MMT), were intercalated into Na(+)-MMT. The modified MMT was reacted with poly(ε-caprolactone) diol(M(n)=2000) in THF solution at 80 degreesC for 4 hrs. After reaction, poly(ε-caprolactone) (M(n)=80000) was mixed into the solution for 12 hrs. To prepare the PCL/clay nanocomposite film this solution was cast into the silicon mold at 60 ℃ in vacuum oven for 6 hrs. From the results of XRD and TEM, it was found that the exfoliated PCL/clay nanocomposite were prepared. The effects of the amount of MMT on the mechanical properties and thermal properties of PCL/clay nanocomposites have been investigated by tensile tester and DSC. Because the MMT was dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite were found to be excellent. However. MMT dispersed in PCL matrix had almost no effect on the tensile strength of the composites. The crystallization temperature of PCL increased in proportion to 3 wt% MMT in the PCL matrix.
  1. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukuhima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1185 (1993)
  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Appl. Polym. Sci., 49, 1259 (1993) 
  3. Messersmith PB, Giannelis EP, J. Polym. Sci. A: Polym. Chem., 33(7), 1047 (1995) 
  4. Lyu SG, Park GR, Sur GS, Polym.(Korea), 23(6), 884 (1999)
  5. Choi HK, Park YH, Lyu SG, Kim BS, Sur GS, Polym.(Korea), 23(5), 724 (1999)
  6. Choi HK, Ryu JG, Lyu SG, Kim BS, Sur GS, J. Korean Ind. Eng. Chem., 10(6), 960 (1999)
  7. Lyu SG, Lee YC, Sur GS, J. Korean Ind. Eng. Chem., 11(5), 512 (2000)
  8. Aranda P, Ruiz-Hitzky E, Chem. Mater., 4, 1395 (1992) 
  9. Giannelis EP, Adv. Mater., 8, 29 (1996) 
  10. Okada A, Wakasumi M, Usumi A, Usuki A, Kojima Y, Kurauchi T, Kamigaito O, Mater. Res. Soc. Symp. Proc., 171, 45 (1990)
  11. Vaia RA, Teukolsky RK, Giannelis EP, Chem. Mater., 6, 1017 (1994) 
  12. Lee CU, Bae KS, Choi HK, Lee JH, Sur GS, Polym.(Korea), 24(2), 228 (2000)
  13. Ryu JG, Park GR, Lyu SG, Rhew JH, Sur GS, Polym.(Korea), 22(2), 328 (1998)
  14. Choi HK, Park YH, Lyu SG, Kim BS, Sur GS, Polym.(Korea), 23(3), 456 (1999)
  15. Nicolais L, Narkis M, Polym. Eng. Sci., 11, 194 (1971)