화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.23, No.4, 213-223, August, 1985
유동층 연소로와 수직전열관 사이의 열전달 특성
Heat Transfer Between Fluidized Bed Combustor and Vertical Tubes
초록
석탄 유동층 연소로에 설치된 수직전열관과 유동층간의 열전달 특성을 유동층 직경이 15 cm이고 높이가 1.0 m, freeboard의 직경은 25 cm, 높이가 0.5 m인 연소로에서 연구하였다.
석탄 입자의 크기(0.33-0.78 mm), 공기유속(60-190 cm/s), 유동층 온도(800-950 ℃) 및 전열관의 반경방향의 위치 등이 열전달계수에 미치는 영향을 결정하였다.
열전달계수는 공기유속에 따라 증가하면서 최대점을 보이다 감소하며, 유동층온도의 증가와 입자크기의 감소에 따라 열전달 계수는 증가한다. 또한 열전달관이 유동층 반경방향으로 반경의 1/4 위치에서 최대 열전달 계수를 얻을 수 있었다. 한편 열전달계수에 미치는 복사의 영향을 고려한 모델식을 구하여서 기체막 두께를 결정하였다.
실험으로부터 복사전열은 전체의 10 % 정도이었으며 평균 기체막 두께는 입자크기의 0.048배로 나타났다. 열전달계수를 Nusselt number로 표시하고 Galileo와 Reynolds numbers의 함수 관계로 상관식을 제시하였다.
Heat transfer coefficients between fluidized bed combustor and the vertically immersed tube have been determined in a 15 cm-ID × 1.0 m-high main fluidized bed having freeboard height of 0.5 m and 25 cm in diameter.
Effects of coal size (0.33-0.78 mm), air velocity (60-190 cm/s), bed temperature (800-950 ℃) and location of the transfer tube in radial direction on heat transfer coefficient have been determined.
A gas film thickness adjacent to the heat transfer tube has been determined from a model equation which account radiation effect.
The average gas film thickness is found to be 0.048dp from the experiments. Heat transfer coefficient exhibit a maximum value along the air velocity. Whereas it increased with bed temperature and decrease of particle size. In addiion, the optimum heat transfer coefficient has been obtained where the transfer tube is located at 1/4db.
The coefficient in terms of Nusselt number can be correlated with Reynolds and Galileo numbers.