화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.2, 153-159, March, 2002
E-beam 전조사에 의한 NO3(-) 선택 흡착용 아민화 PP-g-GMA 섬유 이온교환체의 합성과 그 특성에 관한 연구
Studies on the Synthesis of Aminated PP-g-GMA Fibrous Ion Exchanger by E-beam Pre-irradiation and Their Properties of Selective Adsorption for NO3(-)
E-mail:
초록
본 연구에서는 지하수 중의 NO3(-) 이온을 선택적으로 흡착 제거시키기 위하여 E-beam 전조사법에 의해 GMA 단량체를 폴리프로필렌 섬유 기재에 그라프트 반응시켜 PP-g-GMA 공중합체를 제조한 후 아민화 반응을 통하여 강염기성 APP-g-GMA 음이온교환수지를 합성하였다. 공중합체의 그라프트율 및 TMA에 의한 아민화율은 반응온도가 증가할수록 증가하였으며, 60 ℃일 때 각각 133%, 88%로 최대치를 나타내었고, 이때의 팽윤율과 이온교환용량은 각각 86%, 2.5 meq/g으로 IMAC HP555, Amberlite IRA 400와 같은 상용 이온교환수지 보다 높게 나타났다. NO3(-) 이온흡착의 최적 조건은 pH 5∼6이었으며, trimethylammonium 기를 갖는 -Cl형의 APP-g-GMA 이온교환체가 가장 높은 선택 흡착성을 나타냈다.
In order to remove NO3(-) ion from ground-water, fibrous ion-exchangers, APP-g-GMA, were synthesized by GMA grafting onto PP trunk polymer with E-beam accelerator for pre-irradiation. Their degrees of grafting and amination yield increased up to 60 ℃ and showed maximum values as 133%, 88%, respectively. And their swelling ratio and ion exchange capacity at the maximum values are 86%, 2.5 meq/g, respectively, which was higher than commercial ion-exchangers such as IMAC HP555 and Amberlite IRA 400. Optimum adsorption condition of NO3(-) ion was measured at pH 5∼6 and -Cl form of APP-g-GMA containing trimethylammonium group showed the highest adsorption capacity.
  1. Choi SI, Kim JM, J. Korean Soc. Water Quality Mar., 11, 87 (1995)
  2. Hoek JP, Wan der WF, J. Water Air. Soil Pllution., 37, 41 (1998)
  3. Mirvish SS, Proceeding of the NATO Advanced Research Workshop on Nitrate Contamination, Lincoln. NE., 9 (1990)
  4. Goldberg VM, Environ. Health Perspect., 83, 25 (1989)
  5. Guter GA, "Removal of nitrate from contaminated Water Supplies for Public Use Final Report," USPA, Cincinnati, Ohio (1982)
  6. Kobayashi S, Yamada A, Macromloecules, 8, 390 (1975) 
  7. Sjabadka O, Acta Chim. Acad. Sci. Hung., 99, 363 (1979)
  8. Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981) 
  9. Hegazy EA, El-Assy NB, Dessouki AM, Shaker MM, Rad. Phys. Chem., 33, 13 (1989)
  10. Nho YC, Park JS, Jin JH, J. Korean Ind. Eng. Chem., 7(5), 946 (1996)
  11. Kim M, Saito K, Rad. Phys. Chem., 57, 167 (2000) 
  12. Chapiro A, Rad. Chem. Poly. Sys., High Polymer Ser., 15, interscience, New York (1962)
  13. Okamoto J, Sugo T, Katakai A, Omichi J, J. Appl. Polym. Sci., 30, 2697 (1985)
  14. Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
  15. Kabay N, Katakai A, Sugo T, Rad. Phys. Chem., 46, 833 (1995) 
  16. Kato T, Kago T, Kusakabe K, Morooka S, Egawa H, J. Chem. Eng. Jpn., 23, 743 (1990)
  17. Shakir K, Beheir SG, J. Chem. Technol. Biotechnol., 30, 563 (1980)
  18. Egawa H, Nonaka T, Maeda H, J. Appl. Polym. Sci., 30, 3239 (1985) 
  19. Kim DW, Kim KS, Lee NK, J. Korean Chem. Sci., 29, 164 (1985)
  20. Ha KS, J. Korean Soc. Envir. Eng., 19, 49 (1997)