- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.26, No.2, 153-159, March, 2002
E-beam 전조사에 의한 NO3(-) 선택 흡착용 아민화 PP-g-GMA 섬유 이온교환체의 합성과 그 특성에 관한 연구
Studies on the Synthesis of Aminated PP-g-GMA Fibrous Ion Exchanger by E-beam Pre-irradiation and Their Properties of Selective Adsorption for NO3(-)
E-mail:
초록
본 연구에서는 지하수 중의 NO3(-) 이온을 선택적으로 흡착 제거시키기 위하여 E-beam 전조사법에 의해 GMA 단량체를 폴리프로필렌 섬유 기재에 그라프트 반응시켜 PP-g-GMA 공중합체를 제조한 후
아민화 반응을 통하여 강염기성 APP-g-GMA 음이온교환수지를 합성하였다. 공중합체의 그라프트율 및
TMA에 의한 아민화율은 반응온도가 증가할수록 증가하였으며, 60 ℃일 때 각각 133%, 88%로 최대치를 나타내었고, 이때의 팽윤율과 이온교환용량은 각각 86%, 2.5 meq/g으로 IMAC HP555, Amberlite IRA
400와 같은 상용 이온교환수지 보다 높게 나타났다. NO3(-) 이온흡착의 최적 조건은 pH 5∼6이었으며,
trimethylammonium 기를 갖는 -Cl형의 APP-g-GMA 이온교환체가 가장 높은 선택 흡착성을 나타냈다.
In order to remove NO3(-) ion from ground-water, fibrous ion-exchangers, APP-g-GMA, were synthesized by GMA grafting onto PP trunk polymer with E-beam accelerator for pre-irradiation. Their degrees of grafting and amination yield increased up to 60 ℃ and showed maximum values as 133%, 88%, respectively. And their swelling ratio and ion exchange capacity at the maximum values are 86%, 2.5 meq/g, respectively, which was higher than commercial ion-exchangers such as IMAC HP555 and Amberlite IRA 400. Optimum adsorption condition of NO3(-) ion was measured at pH 5∼6 and -Cl form of APP-g-GMA containing trimethylammonium group showed the highest adsorption capacity.
- Choi SI, Kim JM, J. Korean Soc. Water Quality Mar., 11, 87 (1995)
- Hoek JP, Wan der WF, J. Water Air. Soil Pllution., 37, 41 (1998)
- Mirvish SS, Proceeding of the NATO Advanced Research Workshop on Nitrate Contamination, Lincoln. NE., 9 (1990)
- Goldberg VM, Environ. Health Perspect., 83, 25 (1989)
- Guter GA, "Removal of nitrate from contaminated Water Supplies for Public Use Final Report," USPA, Cincinnati, Ohio (1982)
- Kobayashi S, Yamada A, Macromloecules, 8, 390 (1975)
- Sjabadka O, Acta Chim. Acad. Sci. Hung., 99, 363 (1979)
- Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981)
- Hegazy EA, El-Assy NB, Dessouki AM, Shaker MM, Rad. Phys. Chem., 33, 13 (1989)
- Nho YC, Park JS, Jin JH, J. Korean Ind. Eng. Chem., 7(5), 946 (1996)
- Kim M, Saito K, Rad. Phys. Chem., 57, 167 (2000)
- Chapiro A, Rad. Chem. Poly. Sys., High Polymer Ser., 15, interscience, New York (1962)
- Okamoto J, Sugo T, Katakai A, Omichi J, J. Appl. Polym. Sci., 30, 2697 (1985)
- Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
- Kabay N, Katakai A, Sugo T, Rad. Phys. Chem., 46, 833 (1995)
- Kato T, Kago T, Kusakabe K, Morooka S, Egawa H, J. Chem. Eng. Jpn., 23, 743 (1990)
- Shakir K, Beheir SG, J. Chem. Technol. Biotechnol., 30, 563 (1980)
- Egawa H, Nonaka T, Maeda H, J. Appl. Polym. Sci., 30, 3239 (1985)
- Kim DW, Kim KS, Lee NK, J. Korean Chem. Sci., 29, 164 (1985)
- Ha KS, J. Korean Soc. Envir. Eng., 19, 49 (1997)