화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.2, 160-167, March, 2002
유로키나제 분리를 위한 아민화 HPP-g-GMA 중공사 이온교환체의 합성에 관한 연구
Synthesis of Aminated Hollow PP-g-GMA Fibrous Ion-Exchanger for Separation of Urokinase
E-mail:
초록
E-beam 전조사법을 이용하여 HPP-g-GMA 공중합체와 아민화 반응을 통한 아민화 HPP-g-GMA 이온교환체를 합성하였다. 그라프트율은 GMA 단량체 농도가 증가함에 따라 증가하였으며 GMA 단량체 농도가 1.46 M에서 그라프트율이 130%로 최대를 나타냈다. 아민화율은 그라프트율이 증가함에 따라 증가하는 경향을 나타내었으며, 그라프트율이 100%일 때 37.4%로 최대값을 나타내었다. 아민화 HPP-g-GMA 섬유이온교환체의 이온교환용량은 약 3.78 meq/g으로써 흡착 성능이 매우 우수한 소재임을 확인하였다. BET 분석결과 아민화 HPP-g-GMA의 비표면적은 54.83 m2/g, 기공크기는 26 Å으로 반응전보다 비표면적은 감소하였고 기공크기는 약간 증가하는 경향을 보였다. 또한 SEM 분석 결과, 반응 후 섬유의 두께가 굵어짐을 관찰하였으며 기공 막힘 현상이 관찰되지 않았으며 이로부터 본 연구에서 합성한 섬유이온교환체가 음이온 흡착ㆍ분리에 적합함을 확인하였다.
We synthesized HPP-g-GMA copolymer using pre-irradiation method by E-beam and aminated HPP-g-GMA using amination reaction. Degree of grafting increased with increasing GMA monomer concentration and showed the maximum value of 130% at 1.46 M of GMA. The degree of amination incresed with increasing the degree of grafting. When the degree of grafting was 100%, degree of amination showed the maximum value of 37.4%. The ion exchange capacity of aminated HPP-g-GMA was about 3.78 meq/g, and it showed remarkable adsorption ability of hollow fiber ion exchanger. Through the BET analysis, the surface area of aminated HPP-g-GMA was 54.83 m2/g and the mean pore size was 26 Å. These showed the decrease of surface area and the slight increase of the mean pore size. SEM results show that the thickness of fiber increased after the step of reaction and there pore blocking phenomena was not observed. The aminated HPP-g-GMA was synthesized successfully and found to be suitable for the adsorption and separation of anion.
  1. Sherry S, "Fibrinolysism Thrombosis, and Hemostasis", Philadelphia, London, 31 (1992)
  2. Lijnen HR, Collen D, Tromb. Haemost., 66, 88 (1991)
  3. Chung KH, Sunwoo MW, Woo HS, Baik SB, Korean J. Biotechnol. Bioeng., 5, 183 (1990)
  4. Williams JRB, Brit. J. Exp. Pathol., 32, 530 (1951)
  5. Albrechtsen OK, Acta Physiol. Scand., 39, 284 (1957)
  6. Albrechtsen OK, Brit. J. Haematol., 3, 284 (1957)
  7. Barlow Gh, Lazer L, Thromb. Res., 1, 201 (1973)
  8. Wun TC, Ossowski L, Reich E, J. Biol. Chem., 257, 7262 (1982)
  9. Holmes WE, Pennica D, Blaber M, Rey MA, Guenzler WA, Stettens GJ, Heyneker HL, Biol. Technol., 3, 923 (1985)
  10. Fletcher AD, Alkjaersig N, Sherry S, Genton E, Hirsh J, Bachmann F, J. Lab. Clin. Med., 64, 713 (1965)
  11. Zaworski PG, Gill GS, Anal. Biochem., 173, 440 (1988) 
  12. Bittencourt E, Stannett V, Villiams JL, Hopfenberg HB, J. Appl. Polym. Sci., 26, 879 (1981) 
  13. Hegazy EA, El-Asy NB, Dessouki AM, Shaker MM, Rad. Phys. Chem., 33, 13 (1989)
  14. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985) 
  15. Nho YC, Park JS, Jin JH, J. Korean Ind. Eng. Chem., 7(5), 946 (1996)
  16. Kim M, Saito K, Rad. Phys. Chem., 57, 167 (2000) 
  17. Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
  18. Kabay N, Katakai A, Sugo T, Rad. Phys. Chem., 46, 833 (1995) 
  19. Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
  20. Osman MBS, Hegazy EA, Mostafa AEB, Maksoud AM, Polym. Int., 36, 47 (1995) 
  21. Anasthas HM, Caikar VG, React. Funct. Polym., 27, 23 (2001) 
  22. Friedrich Helfferich, "Ion Exchange", McGraw-Hill Book company, New York (1962)