화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.5, 596-601, October, 2002
자기 광개폐기용 아크릴계 고흡수성 고분자 제조 및 특성에 관한 연구
A Study on Preparation and Characteristics of Acrylic Superabsorbent Polymers for Magnetic Beam Gate
E-mail:
초록
고흡수성 고분자를 용액중합법으로 합성하기 위해 단량체로서 acrylic acid, acrylamide, sodium allysulfonate, 개시제로서 potassium persulfate, N,N,N',N'-tetramethylenediamine, 가교제로서 N,N'-methylenebisacrylamide를 사용하였다. 반응 분위기를 pH 5-9의 범위에서 각각의 poly(acrylamide-sodiumallysulfonate), poly(AM-SAS)를 합성하여 각각의 흡수율을 측정한 결과 pH 7에서 최적인 것으로 나타났다. 반응조건 pH 7에서 제조된 poly(acrylamide-sodiumallysulfonate-acrylicacid), poly(AM-SAS-AA)는 물의 온도가 25 ℃에서 75℃의 범위에서 각각의 흡수율을 측정한 결과 온도 증가는 흡수율의 변화에 직접적인 영향을 주지 않는 것으로 나타났다. 광개폐기를 제조하기 위해 poly(AM-SAS-AA)에 MnZn ferrite를 함량을 달리하여 용액에 분산시켜 제조하였으며, 그에 따른 흡수율을 측정한 결과 MnZn ferrite의 함량이 커질수록 흡수율은 줄어드는 것으로 나타났다. 또한 ferrite의 함량이 증가할수록 착자 크기는 커졌으며, 광개폐기에서의 탈수크기도 커지는 것으로 나타났다.
Superabsorbent polymers were composed of acrylic acid, acrylamide, sodium allysulfonate and sodium acrylate as a starting materials, N,N,N'N'-tetramethylenediamine and N,N'-methylenebisacrylamide as a cross-linker, potassium persulfate as a initiator. The solution polymerization on the formation of superabsorbent polymers were prepared in pH range 5 to 7. It can be seen that the water absorption capacities of poly(acrylamide-sodiumallysulfonate), poly(AM-SAS) depends on the pH. The maximum water absorption capacity of poly(AM-SAS-AA) shown at the condition of pH 7. The prepared poly(acrylamide- sodiumallysulfonate-acrylicacid), poly(AM-SAS-AA) were used to measure the absorption capacity at the temperature range 25 ℃ to 75 ℃. The water absorption capacities increased with the increase of water temperature independent. The synthesized magnetic beam gate which were prepared MnZn ferrite was dispersed by weighing based on the optimal reaction condition of poly(AM-SAS-AA). The water absorption capacities decreased with the increase of MnZn ferrite contents.
  1. Brannon-Peppas L, Peppas NA, Polym. Bull., 20, 285 (1988)
  2. Brannon-Peppas L, Peppas NA, Chem. Eng. Sci., 46, 715 (1991) 
  3. Buchholz FL, Peppas NA, ACS Symposium (1993)
  4. Yamasaki H, Harada S, U.S. Patent, 4,446,261 (1984)
  5. Fredric LB, Nicholas AP, "Superabsorbent Polymers," American Chemical Society, Washington, D.C. (1994)
  6. Chatterjee PK, "Absorbence," Elsevier, N.Y. (1985)
  7. Kyou KY, "New Uses of Super Absorbent Polymers," Kogyo Chosakai Publishing Co., Ltd., Tokyo (1990)
  8. Ryans WT, Nonwovens World, 83 (1993)
  9. Flory PJ, "Principles of Polymer Chemistry," Cornell University Press, Ithaca, N.Y. and London (1953)
  10. Parks LR, U.S. Patent, 4,295,987 (1981)
  11. Yoshida T, Iwagarni S, Ueshima T, Hosoda Y, U.S. Patent, 4,351,922 (1982)
  12. Stanley FW, Lamphere JC, Chonde Y, U.S. Patent, 4,351,261 (1987)
  13. Fanta GF, Stout EI, Doane WM, U.S. Patent, 4,076,663 (1978)
  14. Gugliernelli L, Weaver M, Russell C, U.S. Patent, 3,425,971 (1969)
  15. Liu ZS, Rempel GL, J. Appl. Polym. Sci., 64(7), 1345 (1997) 
  16. Yao KJ, Zhou WJ, J. Appl. Polym. Sci., 53(11), 1533 (1994) 
  17. Cheon SW, Shin YS, Park SS, Choi JS, Theor. Appl. Chem. Eng., 7, 4447 (2001)
  18. Cheon SW, Sung JH, Kim JY, Kim NY, Choi JS, Theor. Appl. Chem. Eng., 6, 4269 (2000)
  19. Osada Y, J. Polym. Sci. C: Polym. Lett., 18, 281 (1980)
  20. Richa J, Tanaka T, Macromolecules, 17, 2916 (1984) 
  21. Gringon J, Scallan AM, J. Appl. Polym. Sci., 25, 2829 (1980)