화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.8, No.5, 464-471, September, 2002
Methane Reforming Reactions over Stable Ni/θ-Al2O3 Catalysts
E-mail:
NiO/θ-Al2O3 catalysts were prepared and investigated after reduction treatment in the methane conversion reactions, such as oxy-reforming, steam reforming and oxy-steam reforming. Among the catalysts with various Ni loading, 12% Ni loading exhibits not only the highest catalytic activity and selectivity but also remarkable stability. The TPR results reveal that strong interaction between Ni and support results in forming stable NiOx species. Reducibility of NiO and the population of NiOx compared with NiO and/or NiAl2O4 play very important roles in the catalytic activity and stability of Ni/θ-Al2O3. Metallic Ni sites formed from the reduction of both NiO weakly interacting with the support and NiOx, strongly interacting with the support are active sites for methane reforming reactions. Even though free NiO sites are prerequisite for high activity, the increase of NiO population in high Ni loading favorably promotes Ni sintering resulting in undesirable catalytic properties.
  1. Rostrup-Nielsen JR, Anderson JR, Boudart M, Catalysis, Science and Technology, vol. 5, p. 1, Springer, Berlin (1984)
  2. Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF, Nature, 344, 319 (1990)
  3. Choudhary VR, Mamman AS, Sansare D, Angew. Chem.-Int. Edit., 31, 1189 (1992)
  4. Pena MA, Gomez JP, Fierro JL, Appl. Catal. A: Gen., 144(1-2), 7 (1996)
  5. Dicks AL, J. Power Sources, 61, 113 (1996)
  6. Choudhary VR, Uphade BS, Mamman AS, J. Catal., 172(2), 281 (1997)
  7. Ruckenstein E, Hul YH, Appl. Catal. A: Gen., 183(1), 85 (1999)
  8. Diskin AM, Cunningham RH, Ormerod RMZ, Catal. Today, 46(2-3), 147 (1998)
  9. Tang S, Lin J, Tan KL, Catal. Lett., 51(3-4), 169 (1998)
  10. Hickman DA, Schmidt LD, Science, 259, 343 (1993)
  11. Jones RH, Aschroft AT, Waller D, Cheetham AK, Thomas JM, Catal. Lett., 8, 169 (1991)
  12. Schmidt LD, Hichman DA, J. Catal., 138, 267 (1992)
  13. Torniainen PM, Chu X, Schmidt LD, J. Catal., 146(1), 1 (1994)
  14. Roh HS, Dong WS, Jun KW, Liu ZW, Park SE, Oh YS, Bull. Korean Chem. Soc., 23, 669 (2002)
  15. Dong WS, Roh HS, Liu ZW, Jin KW, Park SE, Bull. Korean Chem. Soc., 22, 1323 (2001)
  16. Roh HS, Jun KW, Baek SC, Park SE, Chem. Lett., 1048 (2001)
  17. Liu ZW, Jun KW, Roh HS, Park SE, Oh YS, Korean J. Chem. Eng., 19(5), 735 (2002)
  18. Choi WJ, Park JY, Kim MS, Park HS, Hahm HS, J. Ind. Eng. Chem., 7(4), 187 (2001)
  19. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF, Nature, 352, 225 (1991)
  20. Choudhary VR, Rajput AM, Prabhakar B, Angew. Chem.-Int. Edit., 33, 2104 (1994)
  21. Hegarty MES, O'Connor AM, Ross JRH, Catal. Today, 42(3), 225 (1998)
  22. Choudhary VR, Uphade BS, Mamman AS, Appl. Catal. A: Gen., 168(1), 33 (1998)
  23. Choudhary VR, Rajput AM, Prabhakar B, Catal. Lett., 32(3-4), 391 (1995)
  24. Kim KS, Kim SB, Choi WJ, Kim TO, Hahm HS, J. Ind. Eng. Chem., 7(2), 110 (2001)
  25. Roh HS, Dong WS, Jun KW, Park SE, Chem. Lett., 88 (2001)
  26. Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI, J. Mol. Catal. A-Chem., 181, 137 (2002)
  27. Lemonidou AA, Goula MA, Vasalos IA, Catal. Today, 46(2-3), 175 (1998)
  28. Miao Q, Xiong GX, Sheng SS, Cui W, Xu L, Guo XX, Appl. Catal. A: Gen., 154(1-2), 17 (1997)
  29. Lu Y, Xue JZ, Yu CC, Liu Y, Shen SK, Appl. Catal. A: Gen., 174(1-2), 121 (1998)
  30. Roh HS, Jun KW, Dong WS, Park SE, Baek YS, Catal. Lett., 74(1-2), 31 (2001)
  31. Dong WS, Roh HS, Jun KW, Park SE, Oh YS, Appl. Catal. A: Gen., 226(1-2), 63 (2002)
  32. Dong WS, Jun KW, Roh HS, Liu ZW, Park SE, Catal. Lett., 78(1-4), 215 (2002)
  33. Roh HS, Jun KW, Dong WS, Park SE, Joe YI, Chem. Lett., 666 (2001)
  34. Bartholomew CH, Pannell RB, J. Catal., 65, 390 (1980)
  35. Oh YS, Roh HS, Jun KW, Song TY, Baek YS, Park SE, Int. J. Hydrog. Energy, to submitted (2002)
  36. Roh HS, Jun KW, Baek SC, Park SE, Bull. Korean Chem. Soc., 23, 1166 (2002)