화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.7, No.4, 187-192, July, 2001
Catalytic Partial Oxidation of Methane to Methanol
E-mail:
The partial oxidation of methane to produce methanol was investigated with various oxide catalysts. The reaction was carried out using a pyrex-lined fixed bed reactor at 450 ~ 480 ℃ and 20 ~ 46 bar, while changing the flow rate and feed gas ratio. The adsorption and desorption characteristics of oxygen were examined with an O2-TPD experiment. Bi-Cs-Mg-Cu-Mo catalyst was found to be the most suitable for methanol synthesis. It appeared that a catalyst that can easily provide lattice oxygen is more suitable for methanol synthesis. The methane conversion and methanol selectivity increased with the temperature. The methane conversion increased with the oxygen concentration, while the methanol selectivity decreased with increasing oxygen concentration. The feed flow rate did not exhibit any significant effects on methane conversion and methanol selectivity.
  1. Geerts JWMH, Hoebink JHBJ, van der Wiele K, Catal. Today, 6, 613 (1990)
  2. Sohn JR, Cho HS, Kim HW, J. Ind. Eng. Chem., 5(1), 1 (1999)
  3. Kang M, Lee CT, Um MH, J. Ind. Eng. Chem., 5(1), 10 (1999)
  4. Zaman J, Fuel Process. Technol., 58(2), 61 (1999)
  5. Lee JY, Tak YS, J. Ind. Eng. Chem., 5(2), 139 (1999)
  6. Doh IJ, Pae YI, Sohn JR, J. Ind. Eng. Chem., 5(3), 161 (1999)
  7. Lee SB, Kang SL, Lee JD, Hong IK, J. Ind. Eng. Chem., 5(3), 170 (1999)
  8. Chun JW, Authony RG, Ind. Eng. Chem. Res., 32, 788 (1993)
  9. Lodeng R, Lindvag OA, Soraker P, Roterud PT, Onsager OT, Ind. Eng. Chem. Res., 34(4), 1044 (1995)
  10. Anpo M, Yamashita H, Matsuoka M, Park DR, Shul YG, Park SE, J. Ind. Eng. Chem., 6(2), 59 (2000)
  11. Kim YO, Borry(III) RW, Iglesia E, J. Ind. Eng. Chem., 6(2), 72 (2000)
  12. Rama Rao KS, Jun KW, Shen WJ, Lee KW, J. Ind. Eng. Chem., 6(5), 287 (2000)
  13. Sohn JR, Park EH, J. Ind. Eng. Chem., 6(5), 297 (2000)
  14. Morton L, Hunter N, Gesser H, Chem. Ind., 16, 456 (1990)
  15. Labinger JA, Fuel Process. Technol., 42(2), 325 (1995)
  16. Thomazeau C, Martin V, Afanasiev P, Appl. Catal., 199, 61 (2000) 
  17. Tong Y, Lunsford JH, J. Am. Chem. Soc., 113, 4741 (1991)
  18. Herman RG, Sun Q, Shi CL, Klier K, Wang CB, Hu HC, Wachs IE, Bhasin MM, Catal. Today, 37(1), 1 (1997)
  19. Sohn JR, Park EH, J. Ind. Eng. Chem., 6(5), 312 (2000)
  20. Sohn JR, Kim HW, Pae YI, J. Ind. Eng. Chem., 7(3), 160 (2001)
  21. Arai H, Yamada T, Equchi K, Seiyama T, Appl. Catal., 26, 265 (1986) 
  22. Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW, Catal. Today, 42(3), 217 (1998)
  23. Hutchings GJ, Taylor SH, Catal. Today, 49, 105 (1990)
  24. Rytz DW, Baiker A, Ind. Eng. Chem. Res., 30, 2287 (1991)
  25. Foster NR, Appl. Catal., 19, 11 (1985)
  26. Gayubo AG, Ortega JM, Aguayo AT, Arandes JM, Bilbao J, Chem. Eng. Sci., 55(16), 3223 (2000)
  27. Chun JW, Authony RG, Ind. Eng. Chem. Res., 32, 259 (1993)
  28. Liu Q, Fuel, 75, 1748 (1996)
  29. Foulds GA, Gray BF, Fuel Process. Technol., 42(2), 129 (1995)