화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.1, 26-32, January, 2003
피발산 비닐의 텔로머화반응을 이용한 폴리(피발산 비닐) 텔로머 합성
Synthesis of Poly(vinyl pivalate) Telomer Through Telomerization of Vinyl Pivalate
E-mail:
초록
피발산 비닐의 라디칼 텔로머화반응을 통하여 양 말단에 관능기를 포함한 폴리(피발산 비닐) 텔로머를 합성하였다. 합성된 텔로머의 수평균분자량 (Mn)은 GPC, 1H-NMR, 점도법 세가지로 각각 고찰하였고, 그 값은 2400~13000 g/mol 이었다. 또한, 텔로머의 분자량을 정밀제어하기 위하여 VPi에 대한 텔로겐(CCl4)의 연쇄이동상수값 (Cs)을 Mayo식 및 시뮬레이션에 의해 결정하였는데, Cs은 40, 50, 60 ℃에서 각각 1.15, 1.16, 1.18 이었다. 합성된 텔로머는 전환율 18~72%에서 Mn은 5100~5400 g/mol 사이의 값을 보였고, 이는 시뮬레이션 결과와 일치하였다.
Poly(vinyl pivalate)(PVPi) telomer containing bifunctional end groups was synthesized through radical telomerization of vinyl pivalate. The number-average molecular weight (Mn) of the synthesized telomers was investigated by GPC, 1H-NMR, and viscometric methods. PVPi telomers having a number-average molecular weight (Mn) of 2400~1300 g/mol were obtained. In order to control the molecular weight of telomers, chain transfer constants (Cs) of telogen (CCl4) were determined by using the Mayo equation and simulation, which were 1.15, 1.16, and 1.18 at 40, 50, 60 ℃, respectively. Mn of the synthesized telomers at 60 ℃ were between 5100 and 5400 g/mol at conversion of increasing from 18 to 72%. Those are corresponding to simulation results.
  1. Toyoshima K, Polyvinyl Alcohol Properties and Application, C.A. Finch, Editor, John Wiley & Sons, Chap. 2, p. 22 (1973)
  2. Nakmae K, Nishino Y, Ohkubo H, Matsuzawa S, Yamaura K, Polymer, 33, 2581 (1992) 
  3. Lyoo WS, Kim BC, Ha WS, Polym. Eng. Sci., 37(7), 1259 (1997) 
  4. Sakurada I, Polyvinyl Alcohol Fibers, M. Lewin, Editor, Marcel Dekker, p. 3, p. 361 (1985)
  5. Marten FL, Encyclopedia of Polymer Science and Engineering, H.F. Mark, N.M Bikales, C.G. Menges, and J.L. Kroschwitz, Editors, John Wiley and Sons, vol. 17, p. 167, p. 188 (1985)
  6. Masuda M, Polyvinyl Alcohol - Developments, C.A. Finch, Editor, John Wiley and Sons, p. 403, p. 711 (1991)
  7. Lyoo WS, Ha WS, Polymer, 37(14), 3121 (1996) 
  8. Blomstrom TP, Vinyl Acetal Polymer, H.F. Mark, N.M. Bikals, C.G. Overberger, and G. Menges, Editors, John Wiley & Sons, vol. 17, p. 67 (1989)
  9. Ritger PL, Peppas AN, J. Control. Release, 5, 23 (1987) 
  10. Horiike S, Matsuzawa S, J. Appl. Polym. Sci., 58(8), 1335 (1995) 
  11. Haas HC, Emerson ES, Schuler NW, J. Polym. Sci., 22, 291 (1956) 
  12. Choi JH, Lyoo WS, Ko SW, Macromol. Chem. Phys., 200, 1421 (1999) 
  13. Choi JH, Ko SW, Kim BC, Blackwell J, Lyoo WS, Macromolecules, 34(9), 2964 (2001) 
  14. Stauffer SR, Peppas NA, Polymer, 33, 3932 (1992) 
  15. Nozakura S, Sumi M, Uoi M, Okamoto T, Murahashi S, J. Polym. Sci. A: Polym. Chem., 11, 279 (1973)
  16. Fukae R, Kawakami K, Yamamoto T, Sangen O, Kato T, Kamachi M, Polym. J., 27, 1257 (1995) 
  17. Fukae R, Yamamoto T, Fujita Y, Kawatsuki N, Sangen O, Kamachi M, Polym. J., 29, 293 (1997) 
  18. Lyoo WS, Ha WS, J. Polym. Sci. A: Polym. Chem., 35(1), 55 (1997) 
  19. Sperling LH, Introduction to Physical Polymer Science, 3rd Ed., John Wiley & Sons, p. 63 (2001)
  20. Boutevin B, J. Polym. Sci. A: Polym. Chem., 38(18), 3235 (2000) 
  21. Odian G, Principles of Polymerization, 3rd Ed., John Wiley & Sons, p. 250 (1991)
  22. Hopff H, Dohany J, Makromol. Chem., 69, 131 (1963) 
  23. Sato T, Seno M, Kobayashi M, Kohno T, Tanaka H, Eur. Polym. J., 31, 29 (1995)