화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.1, 33-39, January, 2003
Bisphenol계 DGEBA/DGEBS 에폭시 블렌드 시스템의 열적 특성 및 파괴인성
Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System
E-mail:
초록
본 논문에서는 비스페놀계 2관능성 에폭시 수지 DGEBA/DGEBS 블렌드 시스템의 경화거동, 열안정성, 그리고 파괴인성 특성을 고찰하였다. DGEBA/DGEBS 블렌드 시스템의 함량비율을 100 : 0, 90 : 10, 80 : 20, 70 : 30, 그리고 60 : 40 wt%까지 변화시켰으며, DSC에 의한 열분석을 통하여 Ozawa식으로 경화활성화 에너지(Ea)를 계산하였으며, TGA 열분석을 사용하여 열분해 개시 온도(IDT), 최대 무게 감량시 온도 (Tmax), 그리고 적분 열분해 진행 온도(IPDT) 등 열안정성 인자를 고찰하였다. 경화된 시편의 파괴인성 특성은 크랙성장 저항을 나타내는 임계응력세기 인자 (KIC) 실험을 통하여 알아보았으며, 주사전자현미경(SEM)을 사용하여 시편의 파단 특성을 조사하였다. 실험 결과 DGEBA/DGEBS 블렌드 시스템의 Ea, IPDT, 그리고 KIC는 DGEBS 함량이 20 wt%인 경우 최대값을 나타내었는데, 이는 설폰기의 도입으로 인한 치밀한 네트워크 구조의 형성때문이라 사료된다.
In this study, the bisphenol-based DGEBA/DGEBS blend systems were studied in cure kinetics, thermal stabilities, and fracture toughness of the casting specimen. The content of DGEBA/DGEBS was varied in 100 : 0, 90 : 10, 80 : 20, 70 : 30, and 60 : 40 wt%. The cure activation energies(Ea) of the blend systems were determined by Ozawa's equation. The thermal stabilities, including initial decomposed temperature (IDT), temperatures of maximum rate of degradation (Tmax), and integral procedural decomposition temperature (IPDT) of the cured specimen were investigated by thermogravimetric anaylsis (TGA). For the mechanical interfacial properties of the specimens, the critical stress intensity factor (KIC) test was performed and their fractured surfaces were examined by using a scanning electron microscope (SEM). As a result, Ea, IPDT, and KIC show maximum values in the 20 wt% DGEBS content compared with the neat DGEBA resins. This was probably due to the fact that the elevated networks were formed by the introduction of sulfonyl groups of the DGEBS resin.
  1. Bauer RS, "Epoxy Resin Chemistry," in Advanced in Chemistry Series, No. 114, American Chemical Society, Washington D.C. (1979)
  2. Lee H, Nevile K, Handbook of Epoxy Resin, McGraw-Hill, New York (1967)
  3. Park SJ, Kim HC, Lee HI, Suh DH, Macromolecules, 34(22), 7573 (2001) 
  4. Park SJ, Kim TJ, Kim HY, Polym. Int., 51, 386 (2002) 
  5. Lin MS, Wang MW, Polym. Int., 48, 1243 (1999)
  6. Lin MS, Chiu CC, J. Appl. Polym. Sci., 80(7), 963 (2001) 
  7. Chakrabarty D, Das B, Roy S, J. Appl. Polym. Sci., 67(6), 1051 (1998) 
  8. Sykora V, Spacek V, Dobas I, J. Appl. Polym. Sci., 54(10), 1463 (1994) 
  9. Gao JG, Li YF, Polym. Int., 49, 1590 (2000) 
  10. Parekh JK, Patel RG, Angew. Makromol. Chem., 227, 1 (1995) 
  11. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
  12. Stevens MP, Polymer Chemistry, Oxford University Press, New York (1999)
  13. Pielichowski K, Czub P, Pielichowski J, J. Appl. Polym. Sci., 69(3), 451 (1998) 
  14. Kakiuchi H, Recent Development of Epoxy Resin Hardener, CMC, Tokyo (1994)
  15. Shen SG, Li YF, Gao JG, Sun HW, Int. J. Chem. Kinet., 33, 558 (2001) 
  16. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965) 
  17. Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000) 
  18. Winter HH, Polym. Eng. Sci., 27, 1698 (1987) 
  19. Waters DN, Paddy JL, Anal. Chem., 60, 53 (1988) 
  20. Doyle CD, Anal. Chem., 33, 77 (1961) 
  21. Kwak GH, Park SJ, Lee JR, J. Appl. Polym. Sci., 78(2), 290 (2000) 
  22. Lu MG, Shim MJ, Kim SW, Polym. Int., 48, 787 (1999)