화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.1, 26-32, February, 2003
아임계 및 초임계수하의 p-Xylene의 무촉매 부분 산화반응에서 반응조건이 Terephthalic acid의 선택성에 미치는 영향
Effects of Reaction Conditions on Selectivity of Terephthalic acid in Uncatalyzed Partial Oxidation of p-Xylene under Subcritical and Supercritical Water
E-mail:
초록
아임계와 초임계수 매체하에서 p-xylene을 과산화수소에 의해 무촉매로 부분 산화시켜 terephthalic acid(TPA)를 제조하는 가능성을 실험적으로 검토하였다. 회분식 반응실험을 통해 p-xylene의 전화율과 TPA의 선택성에 미치는 반응온도, 압력, 과산화수소의 주입비의 영향을 검토하였고, 반응생성물로부터 p-xylene의 새로운 산화 분해 경로를 제시하였다. 반응 시작 후 20분이 경과하였을 때 p-xylene의 전화율은 아임계수 조건에서 89.0% 이상이었고, 초임계수 조건에서는 99.0% 이상으로 온도가 높아질수록 증가하였다. TPA의 선택성은 초임계수 조건보다는 아임계수 조건에서 더 높았으며, 특히 온도 300 ℃, 압력 220 bar, 과산화수소 주입비 50%일 때 TPA 수율은 29.0%로 최대값을 나타내었다. 또한 TPA 선택성에 미치는 압력의 영향은 초임계수보다는 아임계수 조건에서 더 큰 것으로 나타났다.
The possibility of manufacturing the terephthalic acid(TPA) by partial oxidation of p-xylene without a catalyst in subcritical and supercritical water medium was investigated experimentally. The effects of reaction conditions such as reaction temperature, pressure and hydrogen peroxide feed ratio on the conversion of p-xylene and the selectivity of TPA produced were investigated in batch reactor and new oxidation reaction pathway of p-xylene was proposed. Conversion of p-xylene was about 89.0% in subcritical condition and increased with the temperature increasing, over 99.0% in supercritical condition after 20 minutes from the start of reaction. The selectivity of TPA in subcritical conditions was higher than in supercritical conditions and the maximum value was 29.0% at 300 ℃, 220 bar, 50% H2O2 feed ratio. The pressure effect on TPA selectivity was higher at subcritical water condition than that at the supercritical condition.
  1. Lee YW, News Inf. Chem. Eng., 19(3), 325 (2001)
  2. Marrone PA, Gschwend PM, Swallow KC, Peters WA, Tester JW, J. Supercrit. Fluids, 12(3), 239 (1998) 
  3. Holliday RL, Jong BYM, Kolis JW, J. Supercrit. Fluids, 12(3), 255 (1998) 
  4. Lee YW, News Inf. Chem. Eng., 19(4), 457 (2001)
  5. Hwang GC, Choi JH, Bae SY, Kumazawa H, Korean J. Chem. Eng., 18(6), 854 (2001)
  6. Kabyemela BM, Takigawa M, Adschiri T, Malaluan RM, Arai K, Ind. Eng. Chem. Res., 37(2), 357 (1998) 
  7. Joung SN, Ahn SH, Yoo KP, Noh MJ, Han JH, Han SH, HWAHAK KONGHAK, 36(1), 92 (1998)
  8. Han JH, News Inf. Chem. Eng., 17(6), 423 (1999)
  9. Ahn SH, Joung SN, Yoo KP, Noh MJ, Han JH, Han SH, Korean J. Chem. Eng., 15(4), 390 (1998)
  10. Koo C, Lee KS, HWAHAK KONGHAK, 32(3), 385 (1994)
  11. Goto M, Nada T, Kawajiri S, Kodama A, Hirose T, J. Chem. Eng. Jpn., 30(5), 813 (1997) 
  12. Lee WY, Park SD, Yeo SD, HWAHAK KONGHAK, 39(2), 257 (2001)
  13. Park CY, Ryu YW, Kim C, Korean J. Chem. Eng., 18(4), 475 (2001)
  14. Osora H, Tachibana S, Imai T, Moriya T, Kag. Kog. Ronbunshu, 26(3), 381 (2000)
  15. Nam SE, Petrochem. Bull., 103(2), 12 (2001)
  16. Yasutaka T, Iwahama T, Sakaguchi S, Ishii Y, Adv. Synth. Catal., 343(2), 220 (2001) 
  17. Raghavendrachar P, Ramachandran S, Ind. Eng. Chem. Res., 31(2), 453 (1992) 
  18. Reynolds WC, "Thermodynamic Properties of Steam in SI," Ph.D. Dissertation, Department of Mechanical Engineering, Stanford, University (1997)
  19. Vogel F, Harf J, Hug AR, Rohr P, Environ. Prog., 18, 7 (1999) 
  20. Croiset E, Rice SF, Hanush RG, AIChE J., 43(9), 2343 (1997) 
  21. Gopalan S, Savage PE, J. Phys. Chem., 98(48), 12646 (1994) 
  22. Portela JR, Lopez J, Nobot E, Martinez OE, J. Hazard. Mater., 88, 95 (2001) 
  23. DiNaro JL, Howard JB, Green WH, Tester JW, Bozzelli JW, J. Phys. Chem. A, 104(45), 10576 (2000) 
  24. Narayan R, Antal MJ, J. Am. Chem. Soc., 112, 1927 (1990) 
  25. Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201 (1997) 
  26. Han SH, Han JH, Noh MJ, Yoo KP, Chem. Ind. Technol., 15(6), 538 (1997)