HWAHAK KONGHAK, Vol.36, No.5, 713-719, October, 1998
고분자 정공 전달체로 측쇄에 Triphenylamine기를 갖는 폴리메타크릴아미드 유도체의 합성과 광·전기적 특성에 관한 연구
Studies on the Synthesis of Polymethacrylamide Derivative with a Triphenylamine Moiety in the Side Chain as a Polymer Hole Transport Material and Its Optoelectrical Characteristics
초록
측쇄에 triphenylamine moiety를 갖는polymethacrylamide유도체를 합성하여 고분타정공 전달체로의 활용 가능성에 관해 검토하였다. 제조한 고분자의 열 및 광·전기적 특성을 TGA, DSC, 순환전압-전류법과 광발광 측정으로조사하였다. ITO/정공 전달체, polymethacr- ylamide 유도체/발광체, Alq/MgAg로구성되는 유기 발광소자를 적층형 유기 박막을 사용하여 제작하였다. 고분자의 산화·환원 전위는 0.94V의 낮은 값을 가지며, 결과적으로 정공 주입에 필요한 에너지 장벽이 작기 때문에 발광소자는 뛰어난 내구성 및 낮은 구동전압을 나타내었다. 이와 같이 제작한 발광소자로부터 dc15V 구동전압에서 150cd/cm2의 녹색을 방출하는 것을 알 수 있었다.
We have synthesized polymethacrylamide derivative with a triphenylamine moiety in the side chain, and then examined the feasibility of its application as a polymer hole transport material. Thermal and optoelectrical characteristics of the polymer were investigated by TGA, DSC, cyclic voltammetry, and photoluminescence measurements. Organic electroluminescent devices consisting of ITO/ hole transport material, polymethacrylamide derivative/ luminescent material, Alq/MgAg were constructed using multilayer organic thin films. The redox potential of the polymer has a low value of 0.94V, which represented the high durability and low drive voltage of the device owing to the small energy barrier for hole injection. Green emission with a luminance of 150 cd/cm2 was achieved at a dc drive voltage of 15V.
Keywords:Polymethacrylamide Derivative;Polymer Hole Transport Material;Optoelectrical Characteristics;Redox Potential;Green Emission
- Braun D, Heeger AJ, Appl. Phys. Lett., 58, 1982 (1991)
- Burn PL, Holmes AB, Kraft A, Bradley DDC, Brown AR, Friend RH, Gymer RW, Nature, 47, 356 (1992)
- Uchida M, Omori Y, Noguchi T, Onnishi T, Yoshino K, Jpn. J. Appl. Phys., 32, 921 (1993)
- Burrows PE, Sapochak LS, McCarty DM, Forrest SR, Appl. Phys. Lett., 64, 2718 (1994)
- Jordan RH, Dodabalapur A, Strukelj M, Miller TM, Appl. Phys. Lett., 68, 1192 (1996)
- Tang CW, VanSlyke SA, Appl. Phys. Lett., 51(12), 913 (1987)
- Aminaka E, Tsutsui T, Saito S, Synth. Met., 71, 2009 (1995)
- Adachi C, Tsutsui T, Saito S, Appl. Phys. Lett., 56, 799 (1989)
- Katsume T, Hiramoto M, Yokoyama M, Appl. Phys. Lett., 64, 2546 (1994)
- Kido J, Nagai K, Ohashi Y, Chem. Lett. Jpn., 657 (1990)
- Adachi C, Tsutsui T, Saito S, Appl. Phys. Lett., 56, 799 (1990)
- Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K, Appl. Phys. Lett., 65, 807 (1994)
- Adachi C, Nagai K, Tamoto N, Appl. Phys. Lett., 66, 2679 (1995)