화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.5, 518-525, September, 2003
Poly(tetramethylene ether glycol)/Poly(butylene terephthalate) Segmented Block Copolymers: Effects of Composition and Thermal Treatment on Thermal and Physical Properties
E-mail:
The influence of soft segment molecular weight, composition and thermal treatment on thermal and mechanical properties of thermoplastic elastomers of the poly[ether-b-ester] copolymer type (TPEEs) from a hard block of poly(butylene terephthalate) (PBT) and oligoether soft block of poly(tetramethylene ether glycol) (PTMG), differing in the molecular weight of 1000 and 2000 (g/mol) was investigated. Each copolymer was obtained in a two-stage process involving transesterification and polycondensation in the melt. For the most of properties examined, block copolymers with PTMG in the molecular weight of 2000 (g/mol) were better than those with PTMG in the molecular weight of 1000 (g/mol). Differential scanning calorimetry results showed that the melting temperatures of the annealed copolymers shifted to the zones higher than those of the original ones, attributable to the recrystallization by thermal treatment. Moreover, it was shown that the copolymer of 35-PTMG2000 had the most significant mechanical properties for flexural strength and elastic modulus in flexure.
  1. Holden G, Legge NR, Qwirk RP, "Thermoplastic Elastomers," eds. G. Holden, N.R. Legge, and R.P. Qwirk, Hanser, New York (1996)
  2. Salamone JC, "Encyclopedia of Polymeric Materials," ed. J.C. Salamone, CRC Press, New York (1996)
  3. Walker BM, "Handbook of Thermoplastic Elastomers," ed. B.M. Walker, VNR. New York (1982)
  4. Sun SJ, Chang TC, J. Polym. Sci., 33, 2127 (1995)
  5. Trollsas M, Kelly MA, Claesson H, Siemens R, Hedrick JL, Macromolecules, 32(15), 4917 (1999)
  6. Lonnberg V, Starck P, Polym. Testing, 16, 133 (1997) 
  7. Veenstra H, Van Dam J, de Boer AP, Polymer, 40(5), 1119 (1999)
  8. Coleman D, J. Polym. Sci., 14, 15 (1954) 
  9. Charch WH, Shivers JC, Text. Res. J., 29, 536 (1959)
  10. Wistsiepe WK, U.S. Patent, 3,755,146 (1973)
  11. Palanivelu K, Sivaraman P, DasarathaReddy M, Polym. Testing, 21, 345 (2002) 
  12. Li S, Tang X, Luo Y, Xu X, Eur. Polym. J., 34, 1899 (1998)
  13. Jeong HM, Moon SW, Jho JY, Ahn TO, Polymer, 39(2), 459 (1998)
  14. Lal J, Polymer, 39(24), 6183 (1998)
  15. Veenstra H, Van Dam J, de Boer AP, Polymer, 41(8), 3037 (2000)
  16. Spontak RJ, Patel NP, Curr. Opin. Colloid Interface Sci., 5, 334 (2000)
  17. Fray ME, Slonecki J, Polym. Plast. Technol. Eng., 38, 51 (1999)
  18. Deschamps AA, Grijpma DW, Feijen J, Polymer, 42(23), 9335 (2001)
  19. Frensdorff HK, Macromolecules, 4, 369 (1971)
  20. Briber RM, Thomas EL, Polymer, 26, 8 (1985)
  21. Dimitrova TL, La Mantia FP, Pilati F, Toselli M, Valenza A, Visco A, Polymer, 41(13), 4817 (2000)
  22. Rabek JF, Experimental Methods in Polymer Chemistry, ed. J.F. Rabek, John Wiley, New York (1980)
  23. Pesetskii SS, Jurkowski B, Olkhov YA, Olkhova OM, Storozhuk IP, Mozheiko UM, Eur. Polym. J., 37, 2187 (2001)
  24. Ibrahim A, Dahlan M, Prog. Polym. Sci., 23, 665 (1998) 
  25. Ventras JS, Duda JL, Ling HC, Macromolecules, 21, 1470 (1988)
  26. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998)
  27. Park SJ, Cho MS, Lee JR, J. Colloid Interface Sci., 226(1), 60 (2000)
  28. Shin JY, Chang YW, Ryu S, J. Ind. Eng. Chem., 8(4), 375 (2002)